
Katzenpost mix network wire protocol
Yawning Angel
David Stainton

Abstract

This document defines the Katzenpost Mix Network Wire Protocol for use in all network communications to,
from, and within the Katzenpost Mix Network.

Table of Contents
1.1 Conventions Used in This Document ... 1
1. Introduction .. 1

1.2 Key Encapsulation Mechanism ... 1
2. Core Protocol .. 2

2.1 Handshake Phase ... 2
2.1.1 Handshake Authentication ... 3
2.2 Data Transfer Phase ... 3

3. Predefined Commands .. 4
3.1 The no_op Command ... 4
3.2 The disconnect Command ... 4
3.3 The send_packet Command ... 5

4. Command Padding ... 5
5. Anonymity Considerations .. 5
6. Security Considerations .. 5
Acknowledgments ... 6
References ... 6

1.1 Conventions Used in This Document
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be in-
terpreted as described in the section called “References” [6].

The “C” style Presentation Language as described in the section called “References” [6] Section
4 is used to represent data structures, except for cryptographic attributes, which are specified as opaque
byte vectors.

x | y denotes the concatenation of x and y.

1. Introduction
The Katzenpost Mix Network Wire Protocol (KMNWP) is the custom wire protocol for all network
communications to, from, and within the Katzenpost Mix Network. This protocol provides mutual
authentication, and an additional layer of cryptographic security and forward secrecy.

1.2 Key Encapsulation Mechanism

This protocol uses ANY Key Encapsulation Mechanism. However it’s recommended that most users
select a hybrid post quantum KEM such as Xwing. the section called “References” [6]

1

Katzenpost mix net-
work wire protocol

2. Core Protocol
The protocol is based on Kyber and Trevor Perrin’s Noise Protocol Framework the section called
“References” [6] along with “Post Quantum Noise” paper PQNOISE. Older previous versions
of our transport were based on NOISEHFS.

Our transport protocol begins with a prologue, Noise handshake, followed by a stream of Noise Trans-
port messages in a minimal framing layer, over a TCP/IP connection.

Our Noise protocol is configurable via the KEM selection in the TOML configuration files, here’s an
example PQ Noise protocol string:

Noise_pqXX_Xwing_ChaChaPoly_BLAKE2b

The protocol string is a very condensed description of our protocol. We use the pqXX two way Noise
pattern which is described as follows:

pqXX: -> e <- ekem, s -> skem, s <- skem

The next part of the protocol string specifies the KEM, Xwing which is a hybrid KEM where the
share secret outputs of both X25519 and MLKEM768 are combined.

Finally the ChaChaPoly_BLAKE2b parts of the protocol string indicate which stream cipher and
hash function we are using.

As a non-standard modification to the Noise protocol, the 65535 byte message length limit is increased
to 1300000 bytes. We send very large messages over our Noise protocol because of our using the
Sphincs+ signature scheme which has signatures that are about 49k bytes.

It is assumed that all parties using the KMNWP protocol have a fixed long or short lived Xwing
keypair XWING, the public component of which is known to the other party in advance. How such
keys are distributed is beyond the scope of this document.

2.1 Handshake Phase
All sessions start in the Handshake Phase, in which an anonymous authenticated handshake is con-
ducted.

The handshake is a unmodified Noise handshake, with a fixed prologue prefacing the initiator's first
Noise handshake message. This prologue is also used as the prologue input to the Noise Hand-
shakeState Initialize() operation for both the initiator and responder.

The prologue is defined to be the following structure:

struct {
uint8_t protocol_version; /* 0x03 */
} Prologue;

As all Noise handshake messages are fixed sizes, no additional framing is required for the handshake.

Implementations MUST preserve the Noise handshake hash [h] for the purpose of implementing
authentication (Section 2.3).

Implementations MUST reject handshake attempts by terminating the session immediately upon any
Noise protocol handshake failure and when, as a responder, they receive a Prologue containing an
unknown protocol_version value.

2

Katzenpost mix net-
work wire protocol

Implementations SHOULD impose reasonable timeouts for the handshake process, and SHOULD
terminate sessions that are taking too long to handshake.

2.1.1 Handshake Authentication
Mutual authentication is done via exchanging fixed sized payloads as part of the pqXX handshake
consisting of the following structure:

struct {
uint8_t ad_len;
opaque additional_data[ad_len];
opaque padding[255 - ad_len];
uint32_t unix_time;
} AuthenticateMessage;

Where:

• ad_len - The length of the optional additional data.
• additional_data - Optional additional data, such as a username, if any.
• unix_time - 0 for the initiator, the approximate number of seconds since 1970-01-01 00:00:00

UTC for the responder.

The initiator MUST send the AuthenticateMessage after it has received the peer's response (so
after -> s, se in Noise parlance).

The contents of the optional additional_data field is deliberately left up to the implementation,
however it is RECOMMENDED that implementations pad the field to be a consistent length regardless
of contents to avoid leaking information about the authenticating identity.

To authenticate the remote peer given an AuthenticateMessage, the receiving peer must validate the
s component of the Noise handshake (the remote peer's long term public key) with the known value,
along with any of the information in the additional_data field such as the user name, if any.

If the validation procedure succeeds, the peer is considered authenticated. If the validation procedure
fails for any reason, the session MUST be terminated immediately.

Responders MAY add a slight amount (+- 10 seconds) of random noise to the unix_time value to avoid
leaking precise load information via packet queueing delay.

2.2 Data Transfer Phase
Upon successfully concluding the handshake the session enters the Data Transfer Phase, where the
initiator and responder can exchange KMNWP messages.

A KMNWP message is defined to be the following structure:

enum {
no_op(0),
disconnect(1),
send_packet(2),

(255),
} Command;

struct {
Command command;
uint8_t reserved; /* MUST be '0x00' */
uint32_t msg_length; /* 0 <= msg_length <= 1048554) */

3

Katzenpost mix net-
work wire protocol

opaque message[msg_length];
opaque padding[]; /* length is implicit */
} Message;

Notes:

• The padding field, if any MUST be padded with '0x00' bytes.

All outgoing Message(s) are encrypted and authenticated into a pair of Noise Transport messages,
each containing one of the following structures:

struct {
uint32_t message_length;
} CiphertextHeader;

struct {
uint32_t message[ciphertext_length-16];
} Ciphertext;

Notes:

• The ciphertext_length field includes the Noise protocol overhead of 16 bytes, for the Noise
Transport message containing the Ciphertext.

All outgoing Message(s) are preceded by a Noise Transport Message containing a Cipher-
textHeader, indicating the size of the Noise Transport Message transporting the Message Cipher-
text. After generating both Noise Transport Messages, the sender MUST call the Noise CipherState
Rekey() operation.

To receive incoming Ciphertext messages, first the Noise Transport Message containing the Cipher-
textHeader is consumed off the network, authenticated and decrypted, giving the receiver the length
of the Noise Transport Message containing the actual message itself. The second Noise Transport
Message is consumed off the network, authenticated and decrypted, with the resulting message be-
ing returned to the caller for processing. After receiving both Noise Transport Messages, the receiver
MUST call the Noise CipherState Rekey() operation.

Implementations MUST immediately terminate the session any of the DecryptWithAd() opera-
tions fails.

Implementations MUST immediately terminate the session if an unknown command is received in a
Message, or if the Message is otherwise malformed in any way.

Implementations MAY impose a reasonable idle timeout, and terminate the session if it expires.

3. Predefined Commands

3.1 The no_op Command
The no_op command is a command that explicitly is a No Operation, to be used to implement func-
tionality such as keep-alives and or application layer padding.

Implementations MUST NOT send any message payload accompanying this command, and all re-
ceived command data MUST be discarded without interpretation.

3.2 The disconnect Command
The disconnect command is a command that is used to signal explicit session termination. Upon
receiving a disconnect command, implementations MUST interpret the command as a signal from the

4

Katzenpost mix net-
work wire protocol

peer that no additional commands will be sent, and destroy the cryptographic material in the receive
CipherState.

While most implementations will likely wish to terminate the session upon receiving this command,
any additional behavior is explicitly left up to the implementation and application.

Implementations MUST NOT send any message payload accompanying this command, and MUST
not send any further traffic after sending a disconnect command.

3.3 The send_packet Command
The send_packet command is the command that is used by the initiator to transmit a Sphinx Packet
over the network. The command’s message is the Sphinx Packet destined for the responder.

Initiators MUST terminate the session immediately upon reception of a send_packet command.

4. Command Padding
We use traffic padding to hide from a passive network observer which command has been sent or
received.

Among the set of padded commands we exclude the Consensus command because it’s contents are
a very large payload which is usually many times larger than our Sphinx packets. Therefore we only
pad these commands:

GetConsensus NoOp Disconnect SendPacket RetrieveMessage MessageACK Message MessageEmp-
ty

However we split them up into two directions, client to server and server to client because they differ
in size due to the difference in size between SendPacket and Message:

Client to Server commands:

NoOp SendPacket Disconnect RetrieveMessage GetConsensus

Server to client commands:

Message MessageACK MessageEmpty

The GetConsensus command is a special case because we only want to pad it when it’s sent over
the mixnet. We don’t want to pad it when sending to the dirauths. Although it would not be so terrible
if it’s padded when sent to the dirauths… it would just needlessly take up bandwidth without providing
any privacy benefits.

5. Anonymity Considerations
Adversaries being able to determine that two parties are communicating via KMNWP is beyond the
threat model of this protocol. At a minimum, it is trivial to determine that a KMNWP handshake is
being performed, due to the length of each handshake message, and the fixed positions of the various
public keys.

6. Security Considerations
It is imperative that implementations use ephemeral keys for every handshake as the security properties
of the Kyber KEM are totally lost if keys are ever reused.

Kyber was chosen as the KEM algorithm due to it’s conservative parameterization, simplicty of im-
plementation, and high performance in software. It is hoped that the addition of a quantum resistant

5

Katzenpost mix net-
work wire protocol

algorithm will provide forward secrecy even in the event that large scale quantum computers are ap-
plied to historical intercepts.

Acknowledgments
I would like to thank Trevor Perrin for providing feedback during the design of this protocol, and
answering questions regarding Noise.

References
XWING

Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karoline
Varner, Bas Westerbaan, “X-Wing: The Hybrid KEM You’ve Been Looking For”, https://eprint.i-
acr.org/2024/039.pdf.

NOISE

Perrin, T., “The Noise Protocol Framework”, May 2017, https://noiseprotocol.org/noise.pdf.

NOISEHFS

Weatherley, R., “Noise Extension: Hybrid Forward Secrecy”, https://github.com/noiseproto-
col/noise_hfs_spec/blob/master/output/noise_hfs.pdf.

PQNOISE

Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe and Florian Weber, “Post Quan-
tum Noise”, September 2023, https://eprint.iacr.org/2022/539.pdf.

RFC2119

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

RFC5246

Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2”, RFC 5246,
DOI 10.17487/RFC5246, August 2008, http://www.rfc-editor.org/info/rfc5246.

RFC7748

Langley, A., Hamburg, M., and S. Turner, “Elliptic Curves for Security”, RFC 7748, January 2016,
https://www.rfc-editor.org/info/rfc7748.

6

https://eprint.iacr.org/2024/039.pdf
https://eprint.iacr.org/2024/039.pdf
https://noiseprotocol.org/noise.pdf
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://eprint.iacr.org/2022/539.pdf
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc7748

	Katzenpost mix network wire protocol
	Table of Contents
	1.1 Conventions Used in This Document
	1. Introduction
	1.2 Key Encapsulation Mechanism

	2. Core Protocol
	2.1 Handshake Phase
	2.1.1 Handshake Authentication
	2.2 Data Transfer Phase

	3. Predefined Commands
	3.1 The no_op Command
	3.2 The disconnect Command
	3.3 The send_packet Command

	4. Command Padding
	5. Anonymity Considerations
	6. Security Considerations
	Acknowledgments
	References

