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Abstract

This document defines the Sphinx cryptographic packet format for decryption mix networks, and provides a pa-
rameterization based around generic cryptographic primitives types. This document does not introduce any new
crypto, but is meant to serve as an implementation guide.
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Terminology
The following terms are used in this specification.

message A variable-length sequence of octets sent anonymously through the network.
Short messages are sent in a single packet; long messages are fragmented
across multiple packets.

packet A Sphinx packet, of fixed length for each class of traffic, carrying a message
payload and metadata for routing. Packets are routed anonymously through
the mixnet and cryptographically transformed at each hop.

header The packet header consisting of several components, which convey the infor-
mation necessary to verify packet integrity and correctly process the packet.
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payload The fixed-length portion of a packet containing an encrypted message or part
of a message, to be delivered anonymously.

group element An individual element of the group.

group generator A group element capable of generating any other element of the group, via
repeated applications of the generator and the group operation.

Conventions Used in This Document
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be in-
terpreted as described in RFC2119.

The C style Presentation Language as described in RFC5246 Section 4 is used to represent data struc-
tures, except for cryptographic attributes, which are specified as opaque byte vectors.

• x | y denotes the concatenation of x and y.
• x ^ y denotes the bitwise XOR of x and y.
• byte an 8-bit octet.
• x[a:b] denotes the sub-vector of x where a/b denote the start/end byte indexes (inclusive-exclu-

sive); a/b may be omitted to signify the start/end of the vector x respectively.
• x[y] denotes the y'th element of list x.
• x.len denotes the length of list x.
• ZEROBYTES(N) denotes N bytes of 0x00.
• RNG(N) denotes N bytes of cryptographic random data.
• LEN(N) denotes the length in bytes of N.
• CONSTANT_TIME_CMP(x, y) denotes a constant time comparison between the byte vectors x

and y, returning true iff x and y are equal.

1. Introduction
The Sphinx cryptographic packet format is a compact and provably secure design introduced by
George Danezis and Ian Goldberg SPHINX09. It supports a full set of security features: indistinguish-
able replies, hiding the path length and relay position, detection of tagging attacks and replay attacks,
as well as providing unlinkability for each leg of the packet’s journey over the network.

2. Cryptographic Primitives
This specification uses the following cryptographic primitives as the foundational building blocks for
Sphinx:

• H(M) - A cryptographic hash function which takes an octet array M to produce a digest consisting
of a HASH_LENGTH byte octet array. H(M) MUST be pre-image and collision resistant.

• MAC(K, M) - A cryptographic message authentication code function which takes a
M_KEY_LENGTH byte octet array key K and arbitrary length octet array message M to produce an
authentication tag consisting of a MAC_LENGTH byte octet array.

• KDF(SALT, IKM) - A key derivation function which takes an arbitrary length octet array salt
SALT and an arbitrary length octet array initial key IKM, to produce an octet array of arbitrary
length.

• S(K, IV) - A pseudo-random generator (stream cipher) which takes a S_KEY_LENGTH byte
octet array key K and a S_IV_LENGTH byte octet array initialization vector IV to produce an octet
array key stream of arbitrary length.
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• SPRP_Encrypt(K, M)/SPRP_Decrypt(K, M) - A strong pseudo-random permutation
(SPRP) which takes a SPRP_KEY_LENGTH byte octet array key K and arbitrary length message
M, and produces the encrypted ciphertext or decrypted plaintext respectively.

When used with the default payload authentication mechanism, the SPRP MUST be "fragile" in
that any amount of modifications to M results in a large number of unpredictable changes across the
whole message upon a SPRP_Encrypt() or SPRP_Decrypt() operation.

• EXP(X, Y) - An exponentiation function which takes the GROUP_ELEMENT_LENGTH byte octet
array group elements X and Y, and returns X ^^ Y as a GROUP_ELEMENT_LENGTH byte octet
array.

Let G denote the generator of the group, and EXP_KEYGEN() return a GROUP_ELEMEN-
T_LENGTH byte octet array group element usable as private key.

The group defined by G and EXP(X, Y) MUST satisfy the Decision Diffie-Hellman problem.

• EXP_KEYGEN() - Returns a new "suitable" private key for EXP().

2.1 Sphinx Key Derivation Function
Sphinx Packet creation and processing uses a common Key Derivation Function (KDF) to derive the
required MAC and symmetric cryptographic keys from a per-hop shared secret.

The output of the KDF is partitioned according to the following structure:

struct {
opaque header_mac[M_KEY_LENGTH];
opaque header_encryption[S_KEY_LENGTH];
opaque header_encryption_iv[S_IV_LENGTH];
opaque payload_encryption[SPRP_KEY_LENGTH]
opaque blinding_factor[GROUP_ELEMENT_LENGTH];
} SphinxPacketKeys;

Sphinx_KDF( info, shared_secret ) -> packet_keys

Inputs:

• info The optional context and application specific information.
• shared_secret The per-hop shared secret derived from the Diffie-Hellman key exchange.

Outputs:

• packet_keys The SphinxPacketKeys required to handle packet creation or processing.

The output packet_keys is calculated as follows:

kdf_out = KDF( info, shared_secret )
packet_keys = kdf_out[:LEN( SphinxPacketKeys )]

3. Sphinx Packet Parameters

3.1 Sphinx Parameter Constants
The Sphinx Packet Format is parameterized by the implementation based on the application and se-
curity requirements.
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• AD_LENGTH - The constant amount of per-packet unencrypted additional data in bytes.
• PAYLOAD_TAG_LENGTH - The length of the message payload authentication tag in bytes. This

SHOULD be set to at least 16 bytes (128 bits).
• PER_HOP_RI_LENGTH - The length of the per-hop Routing Information (Section 4.1.1
<4.1.1>) in bytes.

• NODE_ID_LENGTH - The node identifier length in bytes.
• RECIPIENT_ID_LENGTH - The recipient identifier length in bytes.
• SURB_ID_LENGTH - The Single Use Reply Block (Section 7 <7.0>) identifier length in

bytes.
• MAX_HOPS - The maximum number of hops a packet can traverse.
• PAYLOAD_LENGTH - The per-packet message payload length in bytes, including a PAY-
LOAD_TAG_LENGTH byte authentication tag.

• KDF_INFO - A constant opaque byte vector used as the info parameter to the KDF for the purpose
of domain separation.

3.2 Sphinx Packet Geometry
The Sphinx Packet Geometry is derived from the Sphinx Parameter Constants Section 3.1. These
are all derived parameters, and are primarily of interest to implementors.

• ROUTING_INFO_LENGTH - The total length of the "routing information" Sphinx Packet Header
component in bytes:

ROUTING_INFO_LENGTH = PER_HOP_RI_LENGTH * MAX_HOPS

• HEADER_LENGTH - The length of the Sphinx Packet Header in bytes:

HEADER_LENGTH = AD_LENGTH + GROUP_ELEMENT_LENGTH + ROUTING_INFO_LENGTH + MAC_LENGTH

• PACKET_LENGTH - The length of the Sphinx Packet in bytes:

PACKET_LENGTH = HEADER_LENGTH + PAYLOAD_LENGTH

4. The Sphinx Cryptographic Packet Struc-
ture

Each Sphinx Packet consists of two parts: the Sphinx Packet Header and the Sphinx Packet Payload:

struct {
opaque header[HEADER_LENGTH];
opaque payload[PAYLOAD_LENGTH];
} SphinxPacket;

• header - The packet header consists of several components, which convey the information nec-
essary to verify packet integrity and correctly process the packet.

• payload - The application message data.

4.1 Sphinx Packet Header
The Sphinx Packet Header refers to the block of data immediately preceding the Sphinx Packet Payload
in a Sphinx Packet.

The structure of the Sphinx Packet Header is defined as follows:
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struct {
opaque additional_data[AD_LENGTH]; /* Unencrypted. */
opaque group_element[GROUP_ELEMENT_LENGTH];
opaque routing_information[ROUTING_INFO_LENGTH];
opaque MAC[MAC_LENGTH];
} SphinxHeader;

• additional_data - Unencrypted per-packet Additional Data (AD) that is visible to every hop.
The AD is authenticated on a per-hop basis.

As the additional_data is sent in the clear and traverses the network unaltered, implementations
MUST take care to ensure that the field cannot be used to track individual packets.

• group_element - An element of the cyclic group, used to derive the per-hop key material re-
quired to authenticate and process the rest of the SphinxHeader and decrypt a single layer of the
Sphinx Packet Payload encryption.

• routing_information - A vector of per-hop routing information, encrypted and authenticated
in a nested manner. Each element of the vector consists of a series of routing commands, specifying
all of the information required to process the packet.

The precise encoding format is specified in Section 4.1.1 <4.1.1>.

• MAC - A message authentication code tag covering the additional_data, group_element, and rout-
ing_information.

4.1.1 Per-hop routing information
The routing_information component of the Sphinx Packet Header contains a vector of per-hop routing
information. When processing a packet, the per hop processing is set up such that the first element in
the vector contains the routing commands for the current hop.

The structure of the routing information is as follows:

struct {
RoutingCommand routing_commands<1..2^8-1>; /* PER_HOP_RI_LENGTH bytes */
opaque encrypted_routing_commands[ROUTING_INFO_LENGTH - PER_HOP_RI_LENGTH];
} RoutingInformation;

The structure of a single routing command is as follows:

struct {
RoutingCommandType command;
select (RoutingCommandType) {
case null:               NullCommand;
case next_node_hop:      NextNodeHopCommand;
case recipient:          RecipientCommand;
case surb_reply:         SURBReplyCommand;
};
} RoutingCommand;

The following routing commands are currently defined:

enum {
null(0),
next_node_hop(1),
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recipient(2),
surb_reply(3),

/* Routing commands between 0 and 0x7f are reserved. */

(255)
} RoutingCommandType;

The null routing command structure is as follows:

struct {
opaque padding<0..PER_HOP_RI_LENGTH-1>;
} NullCommand;

The next_node_hop command structure is as follows:

struct {
opaque next_hop[NODE_ID_LENGTH];
opaque MAC[MAC_LENGTH];
} NextNodeHopCommand;

The recipient command structure is as follows:

struct {
opaque recipient[RECIPEINT_ID_LENGTH];
} RecipientCommand;

The surb_reply command structure is as follows:

struct {
opaque id[SURB_ID_LENGTH];
} SURBReplyCommand;

While the NullCommand padding field is specified as opaque, implementations SHOULD zero fill
the padding. The choice of 0x00 as the terminal NullCommand is deliberate to ease implementation,
as ZEROBYTES(N) produces a valid NullCommand RoutingCommand, resulting in “appending zero
filled padding” producing valid output.

Implementations MUST pad the routing_commands vector so that it is exactly
PER_HOP_RI_LENGTH bytes, by appending a terminal NullCommand if necessary.

Every non-terminal hop’s routing_commands MUST include a NextNodeHopCommand.

4.2 Sphinx Packet Payload
The Sphinx Packet Payload refers to the block of data immediately following the Sphinx Packet Header
in a Sphinx Packet.

For most purposes the structure of the Sphinx Packet Payload can be treated as a single contiguous
byte vector of opaque data.

Upon packet creation, the payload is repeatedly encrypted (unless it is a SURB Reply, see Section
7.0 via keys derived from the Diffie-Hellman key exchange between the packet's group_element
and the public key of each node in the path.

Authentication of packet integrity is done by prepending a tag set to a known value to the plaintext
prior to the first encrypt operation. By virtue of the fragile nature of the SPRP function, any alteration
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to the encrypted payload as it traverses the network will result in an irrecoverably corrupted plaintext
when the payload is decrypted by the recipient.

5. Sphinx Packet Creation
For the sake of brevity, the pseudocode for all of the operations will take a vector of the following
PathHop structure as a parameter named path[] to specify the path a packet will traverse, along with
the per-hop routing commands and per-hop public keys.

struct {
/* There is no need for a node_id here, as
routing_commands[0].next_hop specifies that
information for all non-terminal hops. */
opaque public_key[GROUP_ELEMENT_LENGTH];
RoutingCommand routing_commands<1...2^8-1>;
} PathHop;

It is assumed that each routing_commands vector except for the terminal entry contains at least a
RoutingCommand consisting of a partially assembled NextNodeHopCommand with the next_hop
element filled in with the identifier of the next hop.

5.1 Create a Sphinx Packet Header
Both the creation of a Sphinx Packet and the creation of a SURB requires the generation of a Sphinx
Packet Header, so it is specified as a distinct operation.

Sphinx_Create_Header( additional_data, path[] ) -> sphinx_header,
               payload_keys

Inputs:

• additional_data The Additional Data that is visible to every node along the path in the header.
• path The vector of PathHop structures in hop order, specifying the node id, public key, and routing

commands for each hop.

Outputs: sphinx_header The resulting Sphinx Packet Header.

• payload_keys The vector of SPRP keys used to encrypt the Sphinx Packet Payload, in hop order.

The Sphinx_Create_Header operation consists of the following steps:

1. Derive the key material for each hop.

num_hops = route.len
route_keys = [ ]
route_group_elements = [ ]
priv_key = EXP_KEYGEN()

/* Calculate the key material for the 0th hop. */
group_element = EXP( G, priv_key )
route_group_elements += group_element
shared_secret = EXP( path[0].public_key, priv_key )
route_keys += Sphinx_KDF( KDF_INFO, shared_secret )
blinding_factor = keys[0].blinding_factor

/* Calculate the key material for rest of the hops. */
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for i = 1; i < num_hops; ++i:
shared_secret = EXP( path[i].public_key, priv_key )
for j = 0; j < i; ++j:
shared_secret = EXP( shared_secret, keys[j].blinding_factor )
route_keys += Sphinx_KDF( KDF_INFO, shared_secret )
group_element = EXP( group_element, keys[i-1].blinding_factor )
route_group_elements += group_element

At the conclusion of the derivation process:

• route_keys - A vector of per-hop SphinxKeys.
• route_group_elements - A vector of per-hop group elements.

2. Derive the routing_information keystream and encrypted padding for each hop.

ri_keystream = [ ]
ri_padding = [ ]

for i = 0; i < num_hops; ++i:
keystream = ZEROBYTES( ROUTING_INFO_LENGTH + PER_HOP_RI_LENGTH ) ^
S( route_keys[i].header_encryption,
route_keys[i].header_encryption_iv )
ks_len = LEN( keystream ) - (i + 1) * PER_HOP_RI_LENGTH

padding = keystream[ks_len:]
if i > 0:
prev_pad_len = LEN( ri_padding[i-1] )
padding = padding[:prev_pad_len] ^ ri_padding[i-1] |
padding[prev_pad_len]

ri_keystream += keystream[:ks_len]
ri_padding += padding

At the conclusion of the derivation process:
ri_keystream - A vector of per-hop routing_information
encryption keystreams.
ri_padding   - The per-hop encrypted routing_information
padding.

3. Create the routing_information block.

/* Start with the terminal hop, and work backwards. */
i = num_hops - 1

/* Encode the terminal hop's routing commands. As the
terminal hop can never have a NextNodeHopCommand, there
are no per-hop alterations to be made. */
ri_fragment = path[i].routing_commands |
ZEROBYTES( PER_HOP_RI_LENGTH - LEN( path[i].routing_commands ) )

/* Encrypt and MAC. */
ri_fragment ^= ri_keystream[i]
mac = MAC( route_keys[i].header_mac, additional_data |
route_group_elements[i] | ri_fragment |
ri_padding[i-1] )
routing_info = ri_fragment
if num_hops < MAX_HOPS:
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pad_len = (MAX_HOPS - num_hops) * PER_HOP_RI_LENGTH
routing_info = routing_info | RNG( pad_len )

/* Calculate the routing info for the rest of the hops. */
for i = num_hops - 2; i >= 0; --i:
cmds_to_encode = [ ]

/* Find and finalize the NextNodeHopCommand. */
for j = 0; j < LEN( path[i].routing_commands; j++:
cmd = path[i].routing_commands[j]
if cmd.command == next_node_hop:
/* Finalize the NextNodeHopCommand. */
cmd.MAC = mac
cmds_to_encode = cmds_to_encode + cmd /* Append */

/* Append a terminal NullCommand. */
ri_fragment = cmds_to_encode |
ZEROBYTES( PER_HOP_RI_LENGTH - LEN( cmds_to_encode ) )

/* Encrypt and MAC */
routing_info = ri_fragment | routing_info /* Prepend. */
routing_info ^= ri_keystream[i]
if i > 0:
mac = MAC( route_keys[i].header_mac, additional_data |
route_group_elements[i] | routing_info |
ri_padding[i-1] )
else:
mac = MAC( route_keys[i].header_mac, additional_data |
route_group_elements[i] | routing_info )

At the conclusion of the derivation process:
routing_info - The completed routing_info block.
mac          - The MAC for the 0th hop.

4. Assemble the completed Sphinx Packet Header and Sphinx Packet Payload SPRP key vector.

/* Assemble the completed Sphinx Packet Header. */
SphinxHeader sphinx_header
sphinx_header.additional_data = additional_data
sphinx_header.group_element = route_group_elements[0] /* From step 1. */
sphinx_header.routing_info = routing_info   /* From step 3. */
sphinx_header.mac = mac                     /* From step 3. */

/* Preserve the Sphinx Payload SPRP keys, to return to the
caller. */
payload_keys = [ ]
for i = 0; i < nr_hops; ++i:
payload_keys += route_keys[i].payload_encryption

At the conclusion of the assembly process:
sphinx_header - The completed sphinx_header, to be returned.
payload_keys  - The vector of SPRP keys, to be returned.

5.2 Create a Sphinx Packet

Sphinx_Create_Packet( additional_data, path[], payload ) -> sphinx_packet
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Inputs:

• additional_data The Additional Data that is visible to every node along the path in the header.
• path The vector of PathHop structures in hop order, specifying the node id, public key, and routing

commands for each hop.
• payload The packet payload message plaintext.

Outputs:

• sphinx_packet The resulting Sphinx Packet.

The Sphinx_Create_Packet operation consists of the following steps:

1. Create the Sphinx Packet Header and SPRP key vector.

sphinx_header, payload_keys =
Sphinx_Create_Header( additional_data, path )

2. Prepend the authentication tag, and append padding to the payload.

payload = ZERO_BYTES( PAYLOAD_TAG_LENGTH ) | payload
payload = payload | ZERO_BYTES( PAYLOAD_LENGTH - LEN( payload ) )

3. Encrypt the payload.

for i = nr_hops - 1; i >= 0; --i:
payload = SPRP_Encrypt( payload_keys[i], payload )

4. Assemble the completed Sphinx Packet.

SphinxPacket sphinx_packet
sphinx_packet.header = sphinx_header
sphinx_packet.payload = payload

6. Sphinx Packet Processing
Mix nodes process incoming packets first by performing the Sphinx_Unwrap operation to authen-
ticate and decrypt the packet, and if applicable prepare the packet to be forwarded to the next node.

If Sphinx_Unwrap returns an error for any given packet, the packet MUST be discarded with no
additional processing.

After a packet has been unwrapped successfully, a replay detection tag is checked to ensure that the
packet has not been seen before. If the packet is a replay, the packet MUST be discarded with no
additional processing.

The routing commands for the current hop are interpreted and executed, and finally the packet is
forwarded to the next mix node over the network or presented to the application if the current node
is the final recipient.

6.1 Sphinx_Unwrap Operation
The Sphinx_Unwrap operation is the majority of the per-hop packet processing, handling authen-
tication, decryption, and modifying the packet prior to forwarding it to the next node.

Sphinx_Unwrap( routing_private_key, sphinx_packet ) -> sphinx_packet,
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                  routing_commands,
                  replay_tag

Inputs:

• private_routing_key A group element GROUP_ELEMENT_LENGTH bytes in length, that
serves as the unwrapping Mix’s private key.

• sphinx_packet A Sphinx packet to unwrap.

Outputs:

• error Indicating a unsuccessful unwrap operation if applicable.
• sphinx_packet The resulting Sphinx packet.
• routing_commands A vector of RoutingCommand, specifying the post unwrap actions to be

taken on the packet.
• replay_tag A tag used to detect whether this packet was processed before.

The Sphinx_Unwrap operation consists of the following steps:

0. (Optional) Examine the Sphinx Packet Header’s Additional Data.

If the header’s additional_data element contains information required to complete the unwrap
operation, such as specifying the packet format version or the cryptographic primitives used examine
it now.

Implementations MUST NOT treat the information in the additional_data element as trusted
until after the completion of Step 3 (“Validate the Sphinx Packet Header”).

1. Calculate the hop's shared secret, and replay_tag.

hdr = sphinx_packet.header
shared_secret = EXP( hdr.group_element, private_routing_key )
replay_tag = H( shared_secret )

2. Derive the various keys required for packet processing.

keys = Sphinx_KDF( KDF_INFO, shared_secret )

3. Validate the Sphinx Packet Header.

derived_mac = MAC( keys.header_mac, hdr.additional_data |
hdr.group_element |
hdr.routing_information )
if !CONSTANT_TIME_CMP( derived_mac, hdr.MAC):
/* MUST abort processing if the header is invalid. */
return ErrorInvalidHeader

4. Extract the per-hop routing commands for the current hop.

/* Append padding to preserve length-invariance, as the routing
commands for the current hop will be removed. */
padding = ZEROBYTES( PER_HOP_RI_LENGTH )
B = hdr.routing_information | padding

/* Decrypt the entire routing_information block. */
B = B ^ S( keys.header_encryption, keys.header_encryption_iv )

5. Parse the per-hop routing commands.
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cmd_buf = B[:PER_HOP_RI_LENGTH]
new_routing_information = B[PER_HOP_RI_LENGTH:]

next_mix_command_idx = -1
routing_commands = [ ]
for idx = 0; idx < PER_HOP_RI_LENGTH {
/* WARNING: Bounds checking omitted for brevity. */
cmd_type = b[idx]
cmd = NULL
switch cmd_type {
case null: goto done  /* No further commands. */

case next_node_hop:
cmd = RoutingCommand( B[idx:idx+1+LEN( NextNodeHopCommand )] )
next_mix_command_idx = i /* Save for step 7. */
idx += 1 + LEN( NextNodeHopCommand )
break

case recipient:
cmd = RoutingCommand( B[idx:idx+1+LEN( FinalDestinationCommand )] )
idx += 1 + LEN( RecipientCommand )
break

case surb_reply:
cmd = RoutingCommand( B[idx:idx+1+LEN( SURBReplyCommand )] )
idx += 1 + LEN( SURBReplyCommand )
break

default:
/* MUST abort processing on unrecognized commands. */
return ErrorInvalidCommand
}
routing_commands += cmd /* Append cmd to the tail of the list. */
}
done:

At the conclusion of the parsing step:

• routing_commands - A vector of SphinxRoutingCommand, to be applied at this hop.
• new_routing_information - The routing_information block to be sent to the next hop if any.

6. Decrypt the Sphinx Packet Payload.

payload = sphinx_packet.payload
payload = SPRP_Decrypt( key.payload_encryption, payload )
sphinx_packet.payload = payload

7. Transform the packet for forwarding to the next mix, if the routing commands vector included a
NextNodeHopCommand.

if next_mix_command_idx != -1:
cmd = routing_commands[next_mix_command_idx]
hdr.group_element = EXP( hdr.group_element, keys.blinding_factor )
hdr.routing_information = new_routing_information
hdr.mac = cmd.MAC
sphinx_packet.hdr = hdr
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6.2 Post Sphinx_Unwrap Processing

Upon the completion of the Sphinx_Unwrap operation, implementations MUST take several addi-
tional steps. As the exact behavior is mostly implementation specific, pseudocode will not be provided
for most of the post processing steps.

1. Apply replay detection to the packet.

The replay_tag value returned by Sphinx_Unwrap MUST be unique across all packets processed
with a given private_routing_key.

The exact specifics of how to detect replays is left up to the implementation, however any replays that
are detected MUST be discarded immediately.

2. Act on the routing commands, if any.

The exact specifics of how implementations chose to apply routing commands is deliberately left
unspecified, however in general:

• If there is a NextNodeHopCommand, the packet should be forwarded to the next node based on
the next_hop field upon completion of the post processing.

The lack of a NextNodeHopCommand indicates that the packet is destined for the current node.

• If there is a SURBReplyCommand, the packet should be treated as a SURBReply destined for the
current node, and decrypted accordingly (See Section 7.2)

• If the implementation supports multiple recipients on a single node, the RecipientCommand
command should be used to determine the correct recipient for the packet, and the payload delivered
as appropriate.

It is possible for both a RecipientCommand and a NextNodeHopCommand to be present simulta-
neously in the routing commands for a given hop. The behavior when this situation occurs is im-
plementation defined.

3. Authenticate the packet if required.

If the packet is destined for the current node, the integrity of the payload MUST be authenticated.

The authentication is done as follows:

derived_tag = sphinx_packet.payload[:PAYLOAD_TAG_LENGTH]
expected_tag = ZEROBYTES( PAYLOAD_TAG_LENGTH )
if !CONSTANT_TIME_CMP( derived_tag, expected_tag ):
/* Discard the packet with no further processing. */
return ErrorInvalidPayload

Remove the authentication tag before presenting the payload to the application.

sphinx_packet.payload = sphinx_packet.payload[PAYLOAD_TAG_LENGTH:]

7. Single Use Reply Block (SURB) Creation
A Single Use Reply Block (SURB) is a delivery token with a short lifetime, that can be used by the
recipient to reply to the initial sender.

SURBs allow for anonymous replies, when the recipient does not know the sender of the message.
Usage of SURBs guarantees anonymity properties but also makes the reply messages indistinguishable
from forward messages both to external adversaries as well as the mix nodes.

13



Sphinx cryptographic packet format

When a SURB is created, a matching reply block Decryption Token is created, which is used to decrypt
the reply message that is produced and delivered via the SURB.

The Sphinx SURB wire encoding is implementation defined, but for the purposes of illustrating cre-
ation and use, the following will be used:

struct {
SphinxHeader sphinx_header;
opaque first_hop[NODE_ID_LENGTH];
opaque payload_key[SPRP_KEY_LENGTH];
} SphinxSURB;

7.1 Create a Sphinx SURB and Decryption Token

Structurally a SURB consists of three parts, a pre-generated Sphinx Packet Header, a node identifier
for the first hop to use when using the SURB to reply, and cryptographic keying material by which
to encrypt the reply’s payload. All elements must be securely transmitted to the recipient, perhaps as
part of a forward Sphinx Packet's Payload, but the exact specifics on how to accomplish this is left
up to the implementation.

When creating a SURB, the terminal routing_commands vector SHOULD include a SURBReply-
Command, containing an identifier to ensure that the payload can be decrypted with the correct set of
keys (Decryption Token). The routing command is left optional, as it is conceivable that implementa-
tions may chose to use trial decryption, and or limit the number of outstanding SURBs to solve this
problem.

Sphinx_Create_SURB( additional_data, first_hop, path[] ) ->
             sphinx_surb,
             decryption_token

Inputs:

• additional_data The Additional Data that is visible to every node along the path in the header.
• first_hop The node id of the first hop the recipient must use when replying via the SURB.
• path The vector of PathHop structures in hop order, specifying the node id, public key, and routing

commands for each hop.

Outputs:

• sphinx_surb The resulting Sphinx SURB.
• decryption_token The Decryption Token associated with the SURB.

The Sphinx_Create_SURB operation consists of the following steps:

1. Create the Sphinx Packet Header and SPRP key vector.

sphinx_header, payload_keys =
Sphinx_Create_Header( additional_data, path )

2. Create a key for the final layer of encryption.

final_key = RNG( SPRP_KEY_LENGTH )

3. Build the SURB and Decryption Token.

14



Sphinx cryptographic packet format

SphinxSURB sphinx_surb;
sphinx_surb.sphinx_header = sphinx_header
sphinx_surb.first_hop = first_hop
sphinx_surb.payload_key = final_key

decryption_token = final_key + payload_keys /* Prepend */

7.2 Decrypt a Sphinx Reply Originating from a SURB

A Sphinx Reply packet that was generated using a SURB is externally indistinguishable from a for-
ward Sphinx Packet as it traverses the network. However, the recipient of the reply has an additional
decryption step, the packet starts off unencrypted, and accumulates layers of Sphinx Packet Payload
decryption as it traverses the network.

Determining which decryption token to use when decrypting the SURB reply can be done via the
SURBReplyCommand’s id field, if one is included at the time of the SURB’s creation.

Sphinx_Decrypt_SURB_Reply( decryption_token, payload ) -> message

Inputs:

• decryption_token The vector of keys allowing a client to decrypt the reply ciphertext payload.
This decryption_token is generated when the SURB is created.

• payload The Sphinx Packet ciphertext payload.

Outputs:

• error Indicating a unsuccessful unwrap operation if applicable.
• message The plaintext message.

The Sphinx_Decrypt_SURB_Reply operation consists of the following steps:

1. Encrypt the message to reverse the decrypt operations the payload acquired as it traversed the
network.

for i = LEN( decryption_token ) - 1; i > 0; --i:
payload = SPRP_Encrypt( decryption_token[i], payload )

2. Decrypt and authenticate the message ciphertext.

message = SPRP_Decrypt( decryption_token[0], payload )

derived_tag = message[:PAYLOAD_TAG_LENGTH]
expected_tag = ZEROBYTES( PAYLOAD_TAG_LENGTH )
if !CONSTANT_TIME_CMP( derived_tag, expected_tag ):
return ErrorInvalidPayload

message = message[PAYLOAD_TAG_LENGTH:]

8. Single Use Reply Block Replies
The process for using a SURB to reply anonymously is slightly different from the standard packet
creation process, as the Sphinx Packet Header is already generated (as part of the SURB), and there
is an additional layer of Sphinx Packet Payload encryption that must be performed.

Sphinx_Create_SURB_Reply( sphinx_surb, payload ) -> sphinx_packet
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Inputs:

• sphinx_surb The SphinxSURB structure, decoded from the implementation defined wire en-
coding.

• payload The packet payload message plaintext.

The Sphinx_Create_SURB_Reply operation consists of the following steps:

1. Prepend the authentication tag, and append padding to the payload.

payload = ZERO_BYTES( PAYLOAD_TAG_LENGTH ) | payload
payload = payload | ZERO_BYTES( PAYLOAD_LENGTH - LEN( payload ) )

2. Encrypt the payload.

payload = SPRP_Encrypt( sphinx_surb.payload_key, payload )

3. Assemble the completed Sphinx Packet.

SphinxPacket sphinx_packet
sphinx_packet.header = sphinx_surb.sphinx_header
sphinx_packet.payload = payload

The completed sphinx_packet MUST be sent to the node specified via sphinx_surb.n-
ode_id, as the entire reply sphinx_packet’s header is pre-generated.

9. Anonymity Considerations

9.1 Optional Non-constant Length Sphinx Packet Header Padding

Depending on the mix topology, there is no hard requirement that the per-hop routing info is padded
to one fixed constant length.

For example, assuming a layered topology (referred to as stratified topology in the literature) MIX-
TOPO10, where the layer of any given mix node is public information, as long as the following two
invariants are maintained, there is no additional information available to an adversary:

1. All packets entering any given mix node in a certain layer are uniform in length.
2. All packets leaving any given mix node in a certain layer are uniform in length.

The only information available to an external or internal observer is the layer of any given mix node
(via the packet length), which is information they are assumed to have by default in such a design.

9.2 Additional Data Field Considerations

The Sphinx Packet Construct is crafted such that any given packet is bitwise unlinkable after a
Sphinx_Unwrap operation, provided that the optional Additional Data (AD) facility is not used. This
property ensures that external passive adversaries are unable to track a packet based on content as it
traverses the network. As the on-the-wire AD field is static through the lifetime of a packet (ie: left
unaltered by the Sphinx_Unwrap operation), implementations and applications that wish to use this
facility MUST NOT transmit AD that can be used to distinctly identify individual packets.

9.3 Forward Secrecy Considerations

Each node acting as a mix MUST regenerate their asymmetric key pair relatively frequently. Upon key
rotation the old private key MUST be securely destroyed. As each layer of a Sphinx Packet is encrypted
via key material derived from the output of an ephemeral/static Diffie-Hellman key exchange, with-
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out the rotation, the construct does not provide Perfect Forward Secrecy. Implementations SHOULD
implement defense-in-depth mitigations, for example by using strongly forward-secure link protocols
to convey Sphinx Packets between nodes.

This frequent mix routing key rotation can limit SURB usage by directly reducing the lifetime of
SURBs. In order to have a strong Forward Secrecy property while maintaining a higher SURB lifetime,
designs such as forward secure mixes SFMIX03 could be used.

9.4 Compulsion Threat Considerations

Reply Blocks (SURBs), forward and reply Sphinx packets are all vulnerable to the compulsion threat,
if they are captured by an adversary. The adversary can request iterative decryptions or keys from a
series of honest mixes in order to perform a deanonymizing trace of the destination.

While a general solution to this class of attacks is beyond the scope of this document, applications that
seek to mitigate or resist compulsion threats could implement the defenses proposed in COMPULS05
via a series of routing command extensions.

9.5 SURB Usage Considerations for Volunteer Operated Mix Net-
works

Given a hypothetical scenario where Alice and Bob both wish to keep their location on the mix network
hidden from the other, and Alice has somehow received a SURB from Bob, Alice MUST not utilize
the SURB directly because in the volunteer operated mix network the first hop specified by the SURB
could be operated by Bob for the purpose of deanonymizing Alice.

This problem could be solved via the incorporation of a “cross-over point” such as that described
in MIXMINION, for example by having Alice delegating the transmission of a SURB Reply to a
randomly selected crossover point in the mix network, so that if the first hop in the SURB’s return
path is a malicious mix, the only information gained is the identity of the cross-over point.

10. Security Considerations

10.1 Sphinx Payload Encryption Considerations

The payload encryption’s use of a fragile (non-malleable) SPRP is deliberate and implementations
SHOULD NOT substitute it with a primitive that does not provide such a property (such as a stream
cipher based PRF). In particular there is a class of correlation attacks (tagging attacks) targeting
anonymity systems that involve modification to the ciphertext that are mitigated if alterations to the
ciphertext result in unpredictable corruption of the plaintext (avalanche effect).

Additionally, as the PAYLOAD_TAG_LENGTH based tag-then-encrypt payload integrity authenti-
cation mechanism is predicated on the use of a non-malleable SPRP, implementations that substitute
a different primitive MUST authenticate the payload using a different mechanism.

Alternatively, extending the MAC contained in the Sphinx Packet Header to cover the Sphinx Packet
Payload will both defend against tagging attacks and authenticate payload integrity. However, such
an extension does not work with the SURB construct presented in this specification, unless the SURB
is only used to transmit payload that is known to the creator of the SURB.
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