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Abstract

This document defines the replay detection for any protocol that uses Sphinx cryptographic packet format. This
document is meant to serve as an implementation guide and document the existing replay protect for deployed
mix networks.
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Terminology
The following terms are used in this specification.

epoch A fixed time interval defined in section 4.2 Sphinx Mix and Provider Key
Rotation. The epoch is currently set to 20 minutes. A new PKI document
containing public key material is published for each epoch and is valid only
for that epoch.

packet A Sphinx packet, of fixed length for each class of traffic, carrying a message
payload and metadata for routing. Packets are routed anonymously through
the mixnet and cryptographically transformed at each hop.

header The packet header consisting of several components, which convey the infor-
mation necessary to verify packet integrity and correctly process the packet.

payload The fixed-length portion of a packet containing an encrypted message or part
of a message, to be delivered anonymously.

group A finite set of elements and a binary operation that satisfy the properties of
closure, associativity, invertability, and the presence of an identity element.

group element An individual element of the group.

group generator A group element capable of generating any other element of the group, via
repeated applications of the generator and the group operation.

SEDA Staged Event Driven Architecture. 1. A highly parallelizable computation
model. 2. A computational pipeline composed of multiple stages connected
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by queues utilizing active queue management algorithms that can evict items
from the queue based on dwell time or other criteria where each stage is
a thread pool. 3. The only correct way to efficiently implement a software
based router on general purpose computing hardware.

Conventions Used in This Document
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be in-
terpreted as described in RFC2119.

1. Introduction
The Sphinx cryptographic packet format is a compact and provably secure design introduced by
George Danezis and Ian Goldberg SPHINX09. Although it supports replay detection, the exact mech-
anism of replay detection is neither described in SPHINX09 nor is it described in our SPHINXSPEC.
Therefore we shall describe in detail how to efficiently detect Sphinx packet replay attacks.

2. Sphinx Cryptographic Primitives
This specification borrows the following cryptographic primitives constants from our SPHINXSPEC:

• H(M) - A cryptographic hash function which takes an byte array M to produce a digest consisting
of a HASH_LENGTH byte array. H(M) MUST be pre-image and collision resistant.

• EXP(X, Y) - An exponentiation function which takes the GROUP_ELEMENT_LENGTH byte array
group elements X and Y, and returns X ^^ Y as a GROUP_ELEMENT_LENGTH byte array.

Let G denote the generator of the group, and EXP_KEYGEN() return a GROUP_ELEMENT_LENGTH
byte array group element usable as private key.

The group defined by G and EXP(X, Y) MUST satisfy the Decision Diffie-Hellman problem.

2.1 Sphinx Parameter Constants
• HASH_LENGTH - 32 bytes. Katzenpost currently uses SHA-512/256. RFC6234
• GROUP_ELEMENT_LENGTH - 32 bytes. Katzenpost currently uses X25519. RFC7748

3. System Overview
Mixes as currently deployed, have two modes of operation:

1. Sphinx routing keys and replay caches are persisted to disk
2. Sphinx routing keys and replay caches are persisted to memory

These two modes of operation fundamentally represent a tradeoff between mix server availability
and notional compulsion attack resistance. Ultimately it will be the mix operator’s decision to make
since they affect the security and availability of their mix servers. In particular since mix networks
are vulnerable to the various types of compulsion attacks (see SPHINXSPEC section 9.4 Compulsion
Threat Considerations) and therefore there is some advantage to NOT persisting the Sphinx routing
keys to disk. The mix operator can simply poweroff the mix server before seizure rather than physically
destroying the disk in order to prevent capture of the Sphinx routing keys. An argument can be made
for the use of full disk encryption, however this may not be practical for servers hosted in remote
locations.
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On the other hand, persisting Sphinx routing keys and replay caches to disk is useful because it allows
mix operators to shutdown their mix server for maintenance purposes without loosing these Sphinx
routing keys and replay caches. This means that as soon as the maintenance operation is completed the
mix server is able to rejoin the network. Our current PKI system KATZMIXPKI does NOT provide
a mechanism to notify Directory Authorities of such an outage or maintenance period. Therefore if
there is loss of Sphinx routing keys this results in a mix outage until the next epoch.

The two modes of operation both completely prevent replay attacks after a system restart. In the case
of the disk persistence, replay attacks are prevented because all packets traversing the mix have their
replay tags persisted to disk cache. This cache is therefore once again used to prevent replays after
a system restart. In the case of memory persistence replays are prevented upon restart because the
Sphinx routing keys are destroyed and therefore the mix will not participant in the network until at
least the next epoch rotation. However availability of the mix may require two epoch rotations because
in accordance with KATZMIXPKI mixes publish future epoch keys so that Sphinx packets flowing
through the network can seamlessly straddle the epoch boundaries.

4. Sphinx Packet Replay Cache

4.1 Sphinx Replay Tag Composition

The following excerpt from our SPHINXSPEC shows how the replay tag is calculated.

hdr = sphinx_packet.header
shared_secret = EXP( hdr.group_element, private_routing_key )
replay_tag = H( shared_secret )

However this tag is not utilized in replay detection until the rest of the Sphinx packet is fully processed
and it’s header MAC verified as described in SPHINXSPEC.

4.2 Sphinx Replay Tag Caching
It would be sufficient to use a key value store or hashmap to detect the presence of a duplicate replay tag
however we additionaly employ a bloom filter to increase performance. Sphinx keys must periodically
be rotated and destroyed to mitigate compulsion attacks and therefore our replay caches must likewise
be rotated. This kind of key erasure scheme limits the window of time that an adversary can perform
a compulsion attack. See our PKI specification KATZMIXPKI for more details regarding epoch key
rotation and the grace period before and after the epoch boundary.

We tune our bloom filter for line-speed; that is to say the bloom filter for a given replay cache is tuned
for the maximum number of Sphinx packets that can be sent on the wire during the epoch duration of
the Sphinx routing key. This of course has to take into account the size of the Sphinx packets as well
as the maximum line speed of the network interface. This is a conservative tuning heuristic given that
there must be more than this maximum number of Sphinx packets in order for there to be duplicate
packets.

Our bloomfilter with hashmap replay detection cache looks like this:
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Figure 1. replay cache

Note that this diagram does NOT express the full complexity of the replay caching system. In particular
it does not describe how entries are entered into the bloom filter and hashmap. Upon either bloom
filter mismatch or hashmap mismatch both data structures must be locked and the replay tag inserted
into each.

For the disk persistence mode of operation the hashmap can simply be replaced with an efficient key
value store. Persistent stores may use a write back cache and other techniques for efficiency.
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4.3 Epoch Boundaries
Since mixes publish future epoch keys (see KATZMIXPKI) so that Sphinx packets flowing through
the network can seamlessly straddle the epoch boundaries, our replay detection forms a special kind of
double bloom filter system. During the epoch grace period mixes perform trial decryption of Sphinx
packets. The replay cache used will be the one that is associated with the Sphinx routing key which
was successfully used to decrypt (unwrap transform) the Sphinx packet. This is not a double bloom
filter in the normal sense of this term since each bloom filter used is distinct and associated with it’s
own cache, furthermore, replay tags are only ever inserted into one cache and one bloom filter.

4.4 Cost Of Checking Replays
The cost of checking a replay tag from a single replay cache is the sum of the following operations:

1. Sphinx packet unwrap operation
2. A bloom filter lookup
3. A hashmap or cache lookup

Therefore these operations are roughly O(1) in complexity. However Sphinx packets processed near
epoch boundaries will not be constant time due to trial decryption with two Sphinx routing keys as
mentioned above in section “3.3 Epoch Boundaries”.

5. Concurrent Processing of Sphinx Packet
Replay Tags

The best way to implement a software based router is with a SEDA computational pipeline. We there-
fore need a mechanism to allow multiple threads to reference our rotating Sphinx keys and associated
replay caches. Here we shall describe a shadow memory system which the mix server uses such that
the individual worker threads shall always have a reference to the current set of candidate mix keys
and associates replay caches.

5.1 PKI Updates
The mix server periodically updates it’s knowledge of the network by downloading a new consensus
document as described in KATZMIXPKI. The individual threads in the “cryptoworker” thread pool
which process Sphinx packets make use of a MixKey data structure which consists of:

1. Sphinx routing key material (public and private X25519 keys)
2. Replay Cache
3. Reference Counter

Each of these “cryptoworker” thread pool has it’s own hashmap associating epochs to a reference to the
MixKey. The mix server PKI threat maintains a single hashmap which associates the epochs with the
corresponding MixKey. We shall refer to this hashmap as MixKeys. After a new MixKey is added
to MixKeys, a “reshadow” operation is performed for each “cryptoworker” thread. The “reshadow”
operation performs two tasks:

1. Removes entries from each “cryptoworker” thread's hashmap that are no longer present in
MixKeys and decrements the MixKey reference counter.

2. Adds entries present in MixKeys but are not present in the thread’s hashmap and increments the
MixKey reference counter.

Once a given MixKey reference counter is decremented to zero, the MixKey and it’s associated on
disk data is purged. Note that we do not discuss synchronization primitives, however it should be
obvious that updating the replay cache should likely make use of a mutex or similar primitive to avoid
data races between “cryptoworker” threads.
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