
Public key infrastructure
Yawning Angel
Claudia Diaz

Ania Piotrowska
David Stainton

Masala

Abstract

Table of Contents
Terminology ... 2
Conventions used in this document .. 2
1. Introduction .. 2

1.2 Security properties overview .. 3
1.3 Differences from Tor and Mixminion directory authority systems 3

2. Overview of mix PKI interaction ... 3
2.1 PKI protocol schedule ... 4
2.1.1 Directory authority server schedule ... 4
2.1.2 Mix schedule .. 4

3. Voting for consensus protocol .. 5
3.1 Protocol messages .. 5
3.1.1 Mix descriptor and directory signing ... 5
3.2 Vote exchange ... 5
3.3 Reveal exchange .. 6
3.4 Cert exchange ... 7
3.5 Vote tabulation for consensus computation ... 7
3.6 Signature collection .. 8
3.7 Publication .. 8

4. PKI Protocol data structures .. 8
4.1 Mix descriptor format ... 8
4.1.1 Scheduling mix downtime ... 9
4.2 Directory format .. 9
4.3 Shared random value structure ... 9

5. PKI wire protocol .. 10
5.1 Mix descriptor publication ... 10
5.1.1 The post_descriptor command .. 10
5.1.2 The post_descriptor_status command ... 10

6. Voting .. 11
6.1. The vote command .. 11
6.2. The vote_status command ... 11
6.3. The get_vote command .. 12

7. Retrieval of consensus .. 12
7.1 The get_consensus command .. 12
7.2 The consensus command ... 12
7.3. The Cert command .. 12
7.4. The CertStatus command .. 13

8. Signature exchange .. 13
8.1. The sig command .. 13
8.2. The sig_status command ... 13

9. Scalability considerations .. 13
10. Future work .. 13

1

Public key infrastructure

11. Anonymity considerations .. 13
12. Security considerations .. 13
Acknowledgements .. 14
References .. 14

Terminology
The following terms are used in this specification.

PKI Public key infrastructure

directory authority system Refers to specific PKI schemes used by Mixminion and Tor.

MSL Maximum segment lifetime, currently set to 120 seconds.

mix descriptor A database record which describes a component mix.

family Identifier of security domains or entities operating one or more
mixes in the network. This is used to inform the path selection
algorithm.

nickname A nickname string that is unique in the consensus document,
see Katzenpost Mix Network Specification section 2.2. Net-
work Topology.

layer The layer indicates which network topology layer a particular
mix resides in.

provider A service operated by a third party that Clients communicate
directly with to communicate with the Mixnet. It is responsi-
ble for Client authentication, forwarding outgoing messages to
the Mixnet, and storing incoming messages for the Client. The
Provider MUST have the ability to perform cryptographic op-
erations on the relayed messages.

Conventions used in this document
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be in-
terpreted as described in RFC2119.

The “C” style Presentation Language as described in RFC5246 Section 4 is used to represent data
structures for additional cryptographic wire protocol commands. KATZMIXWIRE

1. Introduction
Mixnets are designed with the assumption that a Public Key Infrastructure (PKI) exists and it gives
each client the same view of the network. This specification is inspired by the Tor and Mixminion
Directory Authority systems MIXMINIONDIRAUTH TORDIRAUTH whose main features are pre-
cisely what we need for our PKI. These are decentralized systems meant to be collectively operated
by multiple entities.

The mix network directory authority system (PKI) is essentially a cooperative decentralized database
and voting system that is used to produce network consensus documents which mix clients periodi-
cally retrieve and use for their path selection algorithm when creating Sphinx packets. These network
consensus documents are derived from a voting process between the Directory Authority servers.

This design prevents mix clients from using only a partial view of the network for their path selection so
as to avoid fingerprinting and bridging attacks FINGERPRINTING, BRIDGING, and LOCALVIEW.

2

Public key infrastructure

The PKI is also used by Authority operators to specify network-wide parameters, for example in the
Katzenpost Decryption Mix Network KATZMIXNET the Poisson mix strategy is used and, therefore,
all clients must use the same lambda parameter for their exponential distribution function when choos-
ing hop delays in the path selection. The Mix Network Directory Authority system, aka PKI, SHALL
be used to distribute such network-wide parameters in the network consensus document that have an
impact on security and performance.

1.2 Security properties overview
This Directory Authority system has the following feature goals and security properties:

• All Directory Authority servers must agree with each other on the set of Directory Authorities.
• All Directory Authority servers must agree with each other on the set of mixes.
• This system is intentionally designed to provide identical network consensus documents to each

mix client. This mitigates epistemic attacks against the client path selection algorithm such as fin-
gerprinting and bridge attacks FINGERPRINTING BRIDGING.

• This system is NOT byzantine-fault-tolerant, it instead allows for manual intervention upon con-
sensus fault by the Directory Authority operators. Further, these operators are responsible for ex-
pelling bad acting operators from the system.

• This system enforces the network policies such as mix join policy wherein intentionally closed
mixnets will prevent arbitrary hosts from joining the network by authenticating all descriptor sig-
natures with a list of allowed public keys.

• The Directory Authority system for a given mix network is essentially the root of all authority.

1.3 Differences from Tor and Mixminion directory au-
thority systems

In this document we specify a Directory Authority system which is different from that of Tor's and
Mixminion’s in a number of ways:

• The list of valid mixes is expressed in an allowlist. For the time being there is no specified “band-
width authority” system which verifies the health of mixes (Further research required in this area).

• There’s no non-directory channel to inform clients that a node is down, so it will end up being a lot
of packet loss, since clients will continue to include the missing node in their path selection until
keys published by the node expire and it falls out of the consensus.

• The schema of the mix descriptors is different from that used in Mixminion and Tor, including a
change which allows our mix descriptor to express n Sphinx mix routing public keys in a single mix
descriptor whereas in the Tor and Mixminion Directory Authority systems, n descriptors are used.

• The serialization format of mix descriptors is different from that used in Mixminion and Tor.
• The shared random number computation is performed every voting round, and is required for a vote

to be accepted by each authority. The shared random number is used to deterministically generate
the network topology.

2. Overview of mix PKI interaction
Each Mix MUST rotate the key pair used for Sphinx packet processing periodically for forward secrecy
reasons and to keep the list of seen packet tags short. SPHINX09 SPHINXSPEC The Katzenpost Mix
Network uses a fixed interval (epoch), so that key rotations happen simultaneously throughout the
network, at predictable times.

Each Directory Authority server MUST use some time synchronization protocol in order to correct-
ly use this protocol. This Directory Authority system requires time synchronization to within a few
minutes.

Let each epoch be exactly 1200 seconds (20 minutes) in duration, and the 0th Epoch begin
at 2017-06-01 00:00 UTC.

3

Public key infrastructure

To facilitate smooth operation of the network and to allow for delays that span across epoch bound-
aries, Mixes MUST publish keys to the PKI for at least 3 epochs in advance, unless the mix will be
otherwise unavailable in the near future due to planned downtime.

At an epoch boundary, messages encrypted to keys from the previous epoch are accepted for a grace
period of 2 minutes.

Thus, at any time, keys for all Mixes for the Nth through N + 2nd epoch will be available, allowing
for a maximum round trip (forward message + SURB) delay + transit time of 40 minutes. SURB
lifetime is limited to a single epoch because of the key rotation epoch, however this shouldn’t present
any useability problems since SURBs are only used for sending ACK messages from the destination
Provider to the sender.

2.1 PKI protocol schedule
There are two main constraints to Authority schedule:

1. There MUST be enough key material extending into the future so that clients are able to construct
Sphinx packets with a forward and reply paths.

2. All participants should have enough time to participate in the protocol; upload descriptors, vote,
generate documents, download documents, establish connections for user traffic.

The epoch duration of 20 minutes is more than adequate for these two constraints.

NOTE: perhaps we should make it shorter? but first let’s do some scaling and bandwidth calculations
to see how bad it gets…

2.1.1 Directory authority server schedule
Directory Authority server interactions are conducted according to the following schedule, where T is
the beginning of the current epoch, and P is the length of the epoch period.

• T - Epoch begins
• T + P/2 - Vote exchange
• T + (5/8)*P - Reveal exchange
• T + (6/8)*P - Tabulation and signature exchange
• T + (7/8)*P - Publish consensus

2.1.2 Mix schedule
Mix PKI interactions are conducted according to the following schedule, where T is the beginning
of the current epoch.

T + P/8 - Deadline for publication of all mixes documents for the next epoch.

T + (7/8)*P - This marks the beginning of the period where mixes perform staggered fetches of
the PKI consensus document.

T + (8/9)*P - Start establishing connections to the new set of relevant mixes in advance of the
next epoch.

T + P - 1MSL - Start accepting new Sphinx packets encrypted to the next epoch’s keys.

T + P + 1MSL - Stop accepting new Sphinx packets encrypted to the previous epoch’s keys, close
connections to peers no longer listed in the PKI documents and erase the list of seen packet tags.

Mix layer changes are controlled by the Directory Authorities and therefore a mix can be reassigned
to a different layer in our stratified topology at any new epoch. Mixes will maintain incoming and

4

Public key infrastructure

outgoing connections to the various nodes until all mix keys have expired, iff the node is still listed
anywhere in the current document.

3. Voting for consensus protocol
In our Directory Authority protocol, all the actors conduct their behavior according to a common
schedule as outlined in section "2.1 PKI Protocol Schedule". The Directory Authority servers exchange
messages to reach consensus about the network. Other tasks they perform include collecting mix de-
scriptor uploads from each mix for each key rotation epoch, voting, shared random number generation,
signature exchange and publishing of the network consensus documents.

3.1 Protocol messages
There are only two document types in this protocol:

• mix_descriptor: A mix descriptor describes a mix.
• directory: A directory contains a list of descriptors and other information that describe the mix

network.

Mix descriptor and directory documents MUST be properly signed.

3.1.1 Mix descriptor and directory signing
Mixes MUST compose mix descriptors which are signed using their private identity key, an ed25519
key. Directories are signed by one or more Directory Authority servers using their authority key, also
an ed25519 key. In all cases, signing is done using JWS RFC7515.

3.2 Vote exchange
As described in section “2.1 PKI Protocol Schedule”, the Directory Authority servers begin the voting
process 1/8 of an epoch period after the start of a new epoch. Each Authority exchanges vote directory
messages with each other.

Authorities archive votes from other authorities and make them available for retreival. Upon receiving
a new vote, the authority examines it for new descriptors and includes any valid descriptors in its view
of the network.

Each Authority includes in its vote a hashed value committing to a choice of a random number for
the vote. See section 4.3 for more details.

3.2.1 Voting Wire Protocol Commands

The Katzenpost Wire Protocol as described in KATZMIXWIRE is used by Authorities to exchange
votes. We define additional wire protocol commands for sending votes:

enum {

: vote(22), vote_status(23),

} Command;

The structures of these commands are defined as follows:

struct {
: uint64_t epoch_number; opaque public_key[ED25519_KEY_LENGTH];
opaque payload[];

5

Public key infrastructure

} VoteCommand;

struct {
: uint8 error_code;

} VoteStatusCommand;

3.2.2 The vote Command

The vote command is used to send a PKI document to a peer Authority during the voting period of
the PKI schedule.

The payload field contains the signed and serialized PKI document representing the sending Author-
ity’s vote. The public_key field contains the public identity key of the sending Authority which the
receiving Authority can use to verify the signature of the payload. The epoch_number field is used by
the receiving party to quickly check the epoch for the vote before deserializing the payload.

Each authority MUST include its commit value for the shared random computation in this phase along
with its signed vote. This computation is derived from the Tor Shared Random Subsystem, TORSRV.

3.2.3 The vote_status Command

The vote_status command is used to reply to a vote command. The error_code field indicates if there
was a failure in the receiving of the PKI document.

enum {

: vote_ok(0), /* None error condition. */ vote_too_early(1), /*
The Authority should try again later. */ vote_too_late(2), /*
This round of voting was missed. */
}

The epoch_number field of the vote struct is compared with the epoch that is currently being voted
on. vote_too_early and vote_too_late are replied back to the voter to report that their vote was not
accepted.

3.3 Reveal exchange
As described in section “2.1 PKI Protocol Schedule”, the Directory Authority servers exchange the re-
veal values after they have exchanged votes which contain a commit value. Each Authority exchanges
reveal messages with each other.

3.3.1 Reveal Wire Protocol Commands

The Katzenpost Wire Protocol as described in KATZMIXWIRE is used by Authorities to exchange
reveal values previously commited to in their votes. We define additional wire protocol commands
for exchanging reveals:

enum {
: reveal(25), reveal_status(26),
} Command;

The structures of these commands are defined as follows:

struct {
: uint64_t epoch_number; opaque public_key[ED25519_KEY_LENGTH];
opaque payload[];

} RevealCommand;

6

Public key infrastructure

struct {
: uint8 error_code;

} RevealStatusCommand;

3.3.2 The reveal Command

The reveal command is used to send a reveal value to a peer authority during the reveal period of
the PKI schedule.

The payload field contains the signed and serialized reveal value. The public_key field contains the
public identity key of the sending Authority which the receiving Authority can use to verify the sig-
nature of the payload. The epoch_number field is used by the receiving party to quickly check the
epoch for the reveal before deserializing the payload.

3.3.3 The reveal_status Command

The reveal_status command is used to reply to a reveal command. The error_code field indicates if
there was a failure in the receiving of the shared random reveal value.

enum {

: reveal_ok(8), /* None error condition. */ reveal_too_early(9),
/* The Authority should try again later. */
reveal_not_authorized(10), /* The Authority was rejected. */
reveal_already_received(11), /* The Authority has already revealed
this round. */ reveal_too_late(12) /* This round of revealing was
missed. */

} Errorcodes;

The epoch_number field of the reveal struct is compared with the epoch that is currently being voted
on. reveal_too_early and reveal_too_late are replied back to the authority to report their reveal was not
accepted. The status code reveal_not_authorized is used if the Authority is rejected. The reveal_al-
ready_received is used to report that a valid reveal command was already received for this round.

3.4 Cert exchange
The Cert command is the same as a Vote but contains the set of Reveal values as seen by the voting
peer. In order to ensure that a misconfigured or malicious Authority operator cannot amplify their abil-
ity to influence the threshold voting process, after Reveal messages have been exchanged, Authorities
vote again, including the Reveals seen by them. Authorities may not introduce new MixDescriptors
at this phase in the protocol.

Otherwise, a consensus partition can be obtained by witholding Reveal values from a threshold number
of Peers. In the case of an even-number of Authorities, a denial of service by a single Authority was
observed.

3.5 Vote tabulation for consensus computation
The main design constraint of the vote tabulation algorithm is that it MUST be a deterministic process
that produces the same result for each directory authority server. This result is known as a network
consensus file.

A network consensus file is a well formed directory struct where the status field is set to consen-
sus and contains 0 or more descriptors, the mix directory is signed by 0 or more directory authority
servers. If signed by the full voting group then this is called a fully signed consensus.

1. Validate each vote directory:

7

Public key infrastructure

• that the liveness fields correspond to the following epoch
• status is vote
• version number matches ours

2. Compute a consensus directory:

Here we include a modified section from the Mixminion PKI spec MIXMINIONDIRAUTH:

For each distinct mix identity in any vote directory:

• If there are multiple nicknames for a given identity, do not include any descriptors for that identity.

• If half or fewer of the votes include the identity, do not include any descriptors for the identity. This
also guarantees that there will be only one identity per nickname.

• If we are including the identity, then for each distinct descriptor that appears in any vote directory:
• Do not include the descriptor if it will have expired on the date the directory will be published.
• Do not include the descriptor if it is superseded by other descriptors for this identity.
• Do not include the descriptor if it not valid in the next epoch.
• Otherwise, include the descriptor.

• Sort the list of descriptors by the signature field so that creation of the consensus is reproducible.

• Set directory status field to consensus.

3. Compute a shared random number from the values revealed in the “Reveal” step. Authorities whose
reveal value does not verify their commit value MUST be excluded from the consensus round.
Authorities ensure that their peers MUST participate in Commit-and-Reveal, and MUST use correct
Reveal values obtained from other Peers as part of the “Cert” exchange.

4. Generate or update the network topology using the shared random number as a seed to a determinis-
tic random number generator that determines the order that new mixes are placed into the topology.

3.6 Signature collection
Each Authority signs their view of consensus, and exchanges detached Signatures with each other.
Upon receiving each Signature it is added to the signatures on the Consensus if it validates the Con-
sensus. The Authority SHOULD warn the administrator if network partition is detected.

If there is disagreement about the consensus directory, each authority collects signatures from only
the servers which it agrees with about the final consensus.

// TODO: consider exchanging peers votes amongst authorities (or hashes thereof) to // ensure that an
authority has distributed one and only unique vote amongst its peers.

3.7 Publication
If the consensus is signed by a majority of members of the voting group then it's a valid consensus
and it is published.

4. PKI Protocol data structures

4.1 Mix descriptor format
Note that there is no signature field. This is because mix descriptors are serialized and signed using
JWS. The IdentityKey field is a public ed25519 key. The MixKeys field is a map from epoch to
public X25519 keys which is what the Sphinx packet format uses.

8

Public key infrastructure

Note

XXX David: replace the following example with a JWS example:

{
"Version": 0,
"Name": "",
"Family": "",
"Email": "",
"AltContactInfo":"",
"IdentityKey": "",
"LinkKey":"",
"MixKeys": {
"Epoch": "EpochPubKey",
},
"Addresses": ["IP:Port"],
"Layer": 0,
"LoadWeight":0,
"AuthenticationType":""
}

4.1.1 Scheduling mix downtime
Mix operators can publish a half empty mix descriptor for future epochs to schedule downtime. The
mix descriptor fields that MUST be populated are:

• Version
• Name
• Family
• Email
• Layer
• IdentityKey
• MixKeys

The map in the field called "MixKeys" should reflect the scheduled downtime for one or more epochs
by not have those epochs as keys in the map.

4.2 Directory format
Note: replace the following example with a JWS example

{
"Signatures": [],
"Version": 0,
"Status": "vote",
"Lambda" : 0.274,
"MaxDelay" : 30,
"Topology" : [],
"Providers" : [],
}

4.3 Shared random value structure
Katzenpost’s Shared Random Value computation is inspired by Tor’s Shared Random Subsystem
TORSRV.

Each voting round a commit value is included in the votes sent to other authorities. These are produced
as follows:

9

Public key infrastructure

H = blake2b-256

COMMIT = Uint64(epoch) | H(REVEAL) REVEAL = Uint64(epoch) | H(RN)

After the votes are collected from the voting round, and before signature exchange, the Shared Random
Value field of the consensus document is the output of H over the input string calculated as follows:

1. Validated Reveal commands received including the authorities own reveal are sorted by reveal
value in ascending order and appended to the input in format IdentityPublicKeyBytes_n | Reveal-
Value_n

However instead of the Identity Public Key bytes we instead encode the Reveal with the blake2b 256
bit hash of the public key bytes.

2. If a SharedRandomValue for the previous epoch exists, it is appended to the input string, otherwise
32 NUL (x00) bytes are used.

REVEALS = ID_a \| R_a \| ID_b \| R_b \| \... SharedRandomValue =
H("shared-random" | Uint64(epoch) | REVEALS | PREVIOUS_SRV)

5. PKI wire protocol
The Katzenpost Wire Protocol as described in KATZMIXWIRE is used by both clients and by Di-
rectory Authority peers. In the following section we describe additional wire protocol commands for
publishing mix descriptors, voting and consensus retrieval.

5.1 Mix descriptor publication
The following commands are used for publishing mix descriptors and setting mix descriptor status:

enum {
/* Extending the wire protocol Commands. */
post_descriptor(20),
post_descriptor_status(21),
}

The structures of these command are defined as follows:

struct {
uint64_t epoch_number;
opaque payload[];
} PostDescriptor;

struct {
uint8 error_code;
} PostDescriptorStatus;

5.1.1 The post_descriptor command
The post_descriptor command allows mixes to publish their descriptors.

5.1.2 The post_descriptor_status command
The post_descriptor_status command is sent in response to a post_descriptor command, and uses the
following error codes:

enum {

10

Public key infrastructure

descriptor_ok(0),
descriptor_invalid(1),
descriptor_conflict(2),
descriptor_forbidden(3),
} ErrorCodes;

6. Voting
The following commands are used by Authorities to exchange votes:

enum {
vote(22),
vote_status(23),
get_vote(24),
} Command;

The structures of these commands are defined as follows:

struct {
uint64_t epoch_number;
opaque public_key[ED25519_KEY_LENGTH];
opaque payload[];
} VoteCommand;

struct {
uint8 error_code;
} VoteStatusCommand;

6.1. The vote command
The vote command is used to send a PKI document to a peer Authority during the voting period
of the PKI schedule.

The payload field contains the signed and serialized PKI document representing the sending Author-
ity’s vote. The public_key field contains the public identity key of the sending Authority which the
receiving Authority can use to verify the signature of the payload. The epoch_number field is used by
the receiving party to quickly check the epoch for the vote before deserializing the payload.

6.2. The vote_status command
The vote_status command is used to reply to a vote command. The error_code field indicates if
there was a failure in the receiving of the PKI document.

enum {
vote_ok(0), /* None error condition. */
vote_too_early(1), /* The Authority should try again later. */
vote_too_late(2), /* This round of voting was missed. */
vote_not_authorized(3), /* The voter's key is not authorized. */
vote_not_signed(4), /* The vote signature verification failed */
vote_malformed(5), /* The vote payload was invalid */
vote_already_received(6), /* The vote was already received */
vote_not_found(7), /* The vote was not found */
}

The epoch_number field of the vote struct is compared with the epoch that is currently being voted
on. vote_too_early and vote_too_late are replied back to the voter to report that their vote was not
accepted.

11

Public key infrastructure

6.3. The get_vote command
The get_vote command is used to request a PKI document (vote) from a peer Authority. The epoch
field contains the epoch from which to request the vote, and the public_key field contains the pub-
lic identity key of the Authority of the requested vote. A successful query is responded to with a
vote command, and queries that fail are responded to with a vote_status command with error_code
vote_not_found(7).

7. Retrieval of consensus
Providers in the Katzenpost mix network system KATZMIXNET may cache validated network con-
sensus files and serve them to clients over the mix network's link layer wire protocol KATZMIXWIRE.
We define additional wire protocol commands for requesting and sending PKI consensus documents:

enum {
/* Extending the wire protocol Commands. */
get_consensus(18),
consensus(19),
} Command;

The structures of these commands are defined as follows:

struct {
uint64_t epoch_number;
} GetConsensusCommand;

struct {
uint8 error_code;
opaque payload[];
} ConsensusCommand;

7.1 The get_consensus command
The get_consensus command is a command that is used to retrieve a recent consensus document. If a
given get_consensus command contains an Epoch value that is either too big or too small then a reply
consensus command is sent with an empty payload. Otherwise if the consensus request is valid then
a consensus command containing a recent consensus document is sent in reply.

Initiators MUST terminate the session immediately upon reception of a get_consensus command.

7.2 The consensus command
The consensus command is a command that is used to send a recent consensus document. The er-
ror_code field indicates if there was a failure in retrieval of the PKI consensus document.

enum {
consensus_ok(0), /* None error condition and SHOULD be accompanied with
a valid consensus payload. */
consensus_not_found(1), /* The client should try again later. */
consensus_gone(2), /* The consensus will not be available in the future. */
} ErrorCodes;

7.3. The Cert command
The cert command is used to send a PKI document to a peer Authority during the voting period of the
PKI schedule. It is the same as the vote command, but must contain the set of SharedRandomCommit
and SharedRandomReveal values as seen by the Authority during the voting process.

12

Public key infrastructure

7.4. The CertStatus command
The cert_status command is the response to a cert command, and is the same as a vote_s-
tatus response, other than the command identifier. Responses are CertOK, CertTooEarly, CertNo-
tAuthorized, CertNotSigned, CertAlreadyReceived, CertTooLate

8. Signature exchange
Signatures exchange is the final round of the consensus protocol and consists of the Sig and SigStatus
commands.

8.1. The sig command
The sig command contains a detached Signature from PublicKey of Consensus for Epoch.

8.2. The sig_status command
The sig_status command is the response to a sig command. Responses are SigOK, SigNotAu-
thorized, SigNotSigned, SigTooEarly, SigTooLate, SigAlreadyReceived, and SigInvalid.

9. Scalability considerations
TODO: notes on scaling, bandwidth usage etc.

10. Future work
• byzantine fault tolerance
• PQ crypto signatures for all PKI documents: mix descriptors and directories. SPHINCS256 could

be used, we already have a golang implementation: https://github.com/Yawning/sphincs256/
• Make a Bandwidth Authority system to measure health of the network. Also perform load balancing

as described in PEERFLOW?
• Implement byzantine attack defenses as described in MIRANDA and MIXRELIABLE where mix

link performance proofs are recorded and used in a reputation system.
• Choose a different serialization/schema language?
• Use a append only merkle tree instead of this voting protocol.

11. Anonymity considerations
• This system is intentionally designed to provide identical network consensus documents to each

mix client. This mitigates epistemic attacks against the client path selection algorithm such as fin-
gerprinting and bridge attacks FINGERPRINTING, BRIDGING.

• If consensus has failed and thus there is more than one consensus file, clients MUST NOT use this
compromised consensus and refuse to run.

• We try to avoid randomizing the topology because doing so splits the anonymity sets on each mix
into two. That is, packets belonging to the previous topology versus the current topology are trivially
distinguishable. On the other hand if enough mixes fall out of consensus eventually the mixnet will
need to be rebalanced to avoid an attacker compromised path selection. One example of this would
be the case where the adversary controls the only mix is one layer of the network topology.

12. Security considerations
• The Directory Authority / PKI system for a given mix network is essentially the root of all authority

in the system. The PKI controls the contents of the network consensus documents that mix clients

13

Public key infrastructure

download and use to inform their path selection. Therefore if the PKI as a whole becomes compro-
mised then so will the rest of the system in terms of providing the main security properties described
as traffic analysis resistance. Therefore a decentralized voting protocol is used so that the system is
more resiliant when attacked, in accordance with the principle of least authority. SECNOTSEP

• Short epoch durations make it is more practical to make corrections to network state using the PKI
voting rounds.

• Fewer epoch keys published in advance is a more conservative security policy because it implies
reduced exposure to key compromise attacks.

• A bad acting Directory Authority who lies on each vote and votes inconsistently can trivially cause
a denial of service for each voting round.

Acknowledgements
We would like to thank Nick Mathewson for answering design questions and thorough design review.

References
BRIDGING

Danezis, G., Syverson, P., “Bridging and Fingerprinting: Epistemic Attacks on Route Selection”,
Proceedings of PETS 2008, Leuven, Belgium, July 2008, https://www.freehaven.net/anonbib/cache/
danezis-pet2008.pdf.

FINGERPRINTING

Danezis, G., Clayton, R., “Route Finger printing in Anonymous Communications”, https://
www.cl.cam.ac.uk/~rnc1/anonroute.pdf.

KATZMIXNET

Angel, Y., Danezis, G., Diaz, C., Piotrowska, A., Stainton, D., “Katzenpost Mix Network Specifica-
tion”, June 2017, https://katzenpost.network/docs/specs/pdf/mixnet.pdf.

KATZMIXWIRE

Angel, Y., “Katzenpost Mix Network Wire Protocol Specification”, June 2017, https://katzenpost.net-
work/docs/specs/pdf/wire.pdf.

LOCALVIEW

Gogolewski, M., Klonowski, M., Kutylowsky, M., “Local View Attack on Anonymous Communica-
tion”, https://cs.pwr.edu.pl/kutylowski/articles/LocalView-WWW.pdf.

MIRANDA

Leibowitz, H., Piotrowska, A., Danezis, G., Herzberg, A., “No right to ramain silent: Isolating Mali-
cious Mixes”, 2017, https://eprint.iacr.org/2017/1000.pdf.

MIXMINIONDIRAUTH

Danezis, G., Dingledine, R., Mathewson, N., “Type III (Mixminion) Mix Directory Specification”,
December 2005, https://www.mixminion.net/dir-spec.txt.

MIXRELIABLE

Dingledine, R., Freedman, M., Hopwood, D., Molnar, D., “A Reputation System to Increase MIX-Net
Reliability”, 2001, Information Hiding, 4th International Workshop, https://www.freehaven.net/anon-
bib/cache/mix-acc.pdf.

PEERFLOW

14

https://www.freehaven.net/anonbib/cache/danezis-pet2008.pdf
https://www.freehaven.net/anonbib/cache/danezis-pet2008.pdf
https://www.cl.cam.ac.uk/~rnc1/anonroute.pdf
https://www.cl.cam.ac.uk/~rnc1/anonroute.pdf
https://katzenpost.network/docs/specs/pdf/mixnet.pdf
https://katzenpost.network/docs/specs/pdf/wire.pdf
https://katzenpost.network/docs/specs/pdf/wire.pdf
https://cs.pwr.edu.pl/kutylowski/articles/LocalView-WWW.pdf
https://eprint.iacr.org/2017/1000.pdf
https://www.mixminion.net/dir-spec.txt
https://www.freehaven.net/anonbib/cache/mix-acc.pdf
https://www.freehaven.net/anonbib/cache/mix-acc.pdf

Public key infrastructure

Johnson, A., Jansen, R., Segal, A., Syverson, P., “PeerFlow: Secure Load Balancing in Tor”, July 2017,
Proceedings on Privacy Enhancing Technologies, https://petsymposium.org/2017/papers/issue2/pa-
per12-2017-2-source.pdf.

RFC2119

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

RFC5246

Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2”, RFC 5246,
DOI 10.17487/RFC5246, August 2008, http://www.rfc-editor.org/info/rfc5246.

RFC7515

Jones, M., Bradley, J., Sakimura, N., “JSON Web Signature (JWS)”, May 2015, https://www.rfc-ed-
itor.org/info/rfc7515.

SECNOTSEP

Miller, M., Tulloh, B., Shapiro, J., “The Structure of Authority: Why Security Is not a Separable
Concer”, http://www.erights.org/talks/no-sep/secnotsep.pdf.

SPHINCS256

Bernstein, D., Hopwood, D., Hulsing, A., Lange, T., Niederhagen, R., Papachristodoulou, L., Sch-
wabe, P., Wilcox O'Hearn, Z., “SPHINCS: practical stateless hash-based signatures”, http://sphinc-
s.cr.yp.to/sphincs-20141001.pdf.

SPHINX09

Danezis, G., Goldberg, I., “Sphinx: A Compact and Provably Secure Mix Format”, DOI 10.1109/
SP.2009.15, May 2009, https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf.

SPHINXSPEC

Angel, Y., Danezis, G., Diaz, C., Piotrowska, A., Stainton, D., “Sphinx Mix Network Cryptographic
Packet Format Specification”, July 2017, https://katzenpost.network/docs/specs/pdf/sphinx.pdf.

TORDIRAUTH

“Tor directory protocol, version 3”, https://spec.torproject.org/dir-spec/index.html.

TORSRV

“Tor Shared Random Subsystem Specification”, https://spec.torproject.org/srv-spec/index.html.

15

https://petsymposium.org/2017/papers/issue2/paper12-2017-2-source.pdf
https://petsymposium.org/2017/papers/issue2/paper12-2017-2-source.pdf
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7515
http://www.erights.org/talks/no-sep/secnotsep.pdf
http://sphincs.cr.yp.to/sphincs-20141001.pdf
http://sphincs.cr.yp.to/sphincs-20141001.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
https://katzenpost.network/docs/specs/pdf/sphinx.pdf
https://spec.torproject.org/dir-spec/index.html
https://spec.torproject.org/srv-spec/index.html

	Public key infrastructure
	Table of Contents
	Terminology
	Conventions used in this document
	1. Introduction
	1.2 Security properties overview
	1.3 Differences from Tor and Mixminion directory authority systems

	2. Overview of mix PKI interaction
	2.1 PKI protocol schedule
	2.1.1 Directory authority server schedule
	2.1.2 Mix schedule

	3. Voting for consensus protocol
	3.1 Protocol messages
	3.1.1 Mix descriptor and directory signing
	3.2 Vote exchange
	3.3 Reveal exchange
	3.4 Cert exchange
	3.5 Vote tabulation for consensus computation
	3.6 Signature collection
	3.7 Publication

	4. PKI Protocol data structures
	4.1 Mix descriptor format
	4.1.1 Scheduling mix downtime
	4.2 Directory format
	4.3 Shared random value structure

	5. PKI wire protocol
	5.1 Mix descriptor publication
	5.1.1 The post_descriptor command
	5.1.2 The post_descriptor_status command

	6. Voting
	6.1. The vote command
	6.2. The vote_status command
	6.3. The get_vote command

	7. Retrieval of consensus
	7.1 The get_consensus command
	7.2 The consensus command
	7.3. The Cert command
	7.4. The CertStatus command

	8. Signature exchange
	8.1. The sig command
	8.2. The sig_status command

	9. Scalability considerations
	10. Future work
	11. Anonymity considerations
	12. Security considerations
	Acknowledgements
	References

