
Katzenpost administration guide

Katzenpost administration guide

Table of Contents
Introducing Katzenpost, a modern mixnet .. 1
Quickstart guide .. 2
Components and configuration of the Katzenpost mixnet ... 3

Understanding the Katzenpost components .. 3
Directory authorities (dirauths) .. 5
Mix nodes .. 5
Gateway nodes ... 5
Service nodes ... 5
Clients ... 5

Configuring Katzenpost .. 6
Configuring directory authorities .. 6
Configuring mix nodes ... 18
Configuring gateway nodes ... 29
Configuring service nodes ... 41

Using the Katzenpost Docker test network ... 57
Requirements .. 57
Preparing to run the container image ... 57
Operating the test mixnet .. 58

Starting and monitoring the mixnet ... 58
Testing the mixnet ... 59
Shutting down the mixnet ... 60
Uninstalling and cleaning up ... 60

Network topology and components ... 61
The Docker file tree ... 63

... 63
Tuning the Katzenpost mixnet ... 66
Using Katzenpost from behind a NAT device ... 67

Using Tor ... 67
Using BindAddresses with Addresses .. 68

Appendix: Configuration files from the Docker test mixnet ... 69
Directory authority ... 69
Mix node ... 71
Gateway node ... 72
Service node ... 74

Operating the Katzenpost mixnet .. 77
CLI usage for directory authorities ... 77
CLI usage for servers ... 77

Appendix: Using gensphinx ... 78

iii

List of Figures
1. The pictured element types correspond to discrete client and server programs that Katzen-
post requires to function. .. 4
1. Test network topology .. 62

iv

List of Tables
1. Katzenpost clients .. 6
2. Directory authority (dirauth) configuration sections .. 6
3. Mix node configuration sections ... 18
4. Gateway node configuration sections ... 29
5. Mix node configuration sections ... 41
1. Table 1: Makefile targets .. 58
2. Table 2: Test mixnet hosts .. 63
1. Lan hosting options .. 67

v

Introducing Katzenpost, a modern
mixnet

To do

1

Quickstart guide
To do

2

Components and configuration of the
Katzenpost mixnet

This section of the Katzenpost technical documentation provides an introduction to the software com-
ponents that make up Katzenpost and guidance on how to configure each component. The intended
reader is a system administrator who wants to implement a working, production Katzenpost network.

For information about the theory and design of this software, see Introducing Katzenpost, a modern
mixnet [https://katzenpost.network/docs/admin_guide/introduction.html]. For a quickly deployable,
non-production test network (primarily for use by developers), Using the Katzenpost Docker test net-
work [https://katzenpost.network/docs/admin_guide/docker.html].

Understanding the Katzenpost components
The core of Katzenpost consists of two program executables, dirauth and server. Running the dirauth
commmand runs a directory authority node, or dirauth, that functions as part of the mixnet's pub-
lic-key infrastructure (PKI). Running the server runs either a mix node, a gateway node, or a service
node, depending on the configuration. Configuration settings are provided in an associated katzen-
post-authority.toml or katzenpost.toml file respectively.

In addition to the server components, Katzenpost also supports connections to client applications host-
ed externally to the mix network and communicating with it through gateway nodes.

A model mix network is shown in Figure 1.

3

https://katzenpost.network/docs/admin_guide/introduction.html
https://katzenpost.network/docs/admin_guide/introduction.html
https://katzenpost.network/docs/admin_guide/introduction.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html

Components and configura-
tion of the Katzenpost mixnet

Figure 1. The pictured element types correspond to discrete client and server
programs that Katzenpost requires to function.

The mix network contains an n-layer topology of mix-nodes, with three nodes per layer in this example.
Sphinx packets traverse the network in one direction only. The gateway nodes allow clients to interact
with the mix network. The service nodes provide mix network services that mix network clients can
interact with. All messages sent by clients are handed to a connector daemon hosted on the client
system, passed across the Internet to a gateway, and then relayed to a service node by way of the
nine mix nodes. The service node sends its reply back across the mix-node layers to a gateway, which
transmits it across the Internet to be received by the targeted client. The mix, gateway, and service
nodes send mix descriptors to the dirauths and retrieve a consensus document from them, described
below.

4

Components and configura-
tion of the Katzenpost mixnet

In addition to the server components, Katzenpost supports connections to client applications hosted
externally to the mix network and communicating with it through gateway nodes and, in some cases,
a client connector.

Directory authorities (dirauths)
Dirauths compose the decentralized public key infrastructure (PKI) that serves as the root of security
for the entire mix network. Clients, mix nodes, gateways nodes, and service nodes rely on the PKI/
dirauth system to maintain and sign an up-to-date consensus document, providing a view of the net-
work including connection information and public cryptographic key materials and signatures.

Every 20 minutes (the current value for an epoch), each mix, gateway, and service node signs a mix
descriptor and uploads it to the dirauths. The dirauths then vote on a new consensus document. If
consensus is reached, each dirauth signs the document. Clients and nodes download the document as
needed and verify the signatures. Consensus fails when 1/2 + 1 nodes fail, which yields greater fault
tolerance than, for example, Byzantine Fault Tolerance, which fails when 1/3 + 1 of the nodes fail.

The PKI signature scheme is fully configurable by the dirauths. Our recommendation is to use a hybrid
signature scheme consisting of classical Ed25519 and the post-quantum, stateless, hash-based signa-
ture scheme known as Sphincs+ (with the parameters: "sphincs-shake-256f"), which is designated in
Katzenpost configurations as "Ed25519 Sphincs+". Examples are provided below.

Mix nodes
The mix node is the fundamental building block of the mix network.

Katzenpost mix nodes are arranged in a layered topology to achieve the best levels of anonymity and
ease of analysis while being flexible enough to scale with traffic demands.

Gateway nodes
Gateway nodes provide external client access to the mix network. Because gateways are uniquely
positioned to identify clients, they are designed to have as little information about client behavior
as possible. Gateways are randomly selected and have no persistent relationship with clients and no
knowledge of whether a client's packets are decoys or not. When client traffic through a gateway is
slow, the node additionally generates decoy traffic.

Service nodes
Service nodes provide functionality requested by clients. They are logically positioned at the deep-
est point of the mix network, with incoming queries and outgoing replies both needing to traverse
all n layers of mix nodes. A service node's functionality may involve storing messages, publishing
information outside of the mixnet, interfacing with a blockchain node, and so on. Service nodes also
process decoy packets.

Clients
Client applications should be designed so that the following conditions are met:

• Separate service requests from a client are unlinkable. Repeating the same request may be lead to
linkability.

• Service nodes and clients have no persistent relationship.

• Cleints generate a stream of packets addressed to random or pseudorandom services regardless of
whether a real service request is being made. Most of these packets will be decoy traffic.

• Traffic from a client to a service node must be correctly coupled with decoy traffic. This can mean
that the service node is chosen independently from traffic history, or that the transmitted packet
replaces a decoy packet that was meant to go to the desired service.

5

Components and configura-
tion of the Katzenpost mixnet

Katzenpost currently includes several client applications. All applications make extensive use of
Sphinx single-use reply blocks (SURBs), which enable service nodes to send replies without know-
ing the location of the client. Newer clients require a connection through the client connector, which
provides multiplexing and privilege separation with a consequent reduction in processing overhead.
These clients also implement the Pigeonhole storage and BACAP protocols detailed in Place-holder
for research paper link.

The following client applications are available.

Table 1. Katzenpost clients

Name Needs connector Description Code

Ping no The mix network equiv-
alent of an ICMP ping
utility, used for network
testing.

GitHub: ping [https://
github.com/
katzenpost/katzen-
post/tree/main/ping]

Katzen no A text chat client with
file-transfer support.

GitHub: katzen [https://
github.com/
katzenpost/katzen]

Status yes An HTML page con-
taining status informa-
tion about the mix net-
work.

GitHub: status [https://
github.com/
katzenpost/status]

Worldmap yes An HTML page with
a world map showing
geographic locations of
mix network nodes.

GitHub: worldmap
[https://github.com/
katzenpost/worldmap]

Configuring Katzenpost
This section documents the configuration parameters for each type of Katzenpost server node. Each
node has its own configuration file in TOML [https://toml.io/en/v1.0.0] format.

Configuring directory authorities
The following configuration is drawn from the reference implementation in katzenpost/dock-
er/dirauth_mixnet/auth1/authority.toml. In a real-world mixnet, the component
hosts would not be sharing a single IP address. For more information about the test mixnet, see Us-
ing the Katzenpost Docker test network [https://katzenpost.network/docs/admin_guide/dock-
er.html].

Table 2. Directory authority (dirauth) configuration sections

Dirauth: Server section

Dirauth: Authorities section

Dirauth: Logging section

Dirauth: Parameters section

Dirauth: Debug section

Dirauth: Mixes sections

Dirauth: GatewayNodes section

Dirauth: ServiceNodes sections

Dirauth: Topology section

Dirauth: SphinxGeometry section

6

https://github.com/katzenpost/katzenpost/tree/main/ping
https://github.com/katzenpost/katzenpost/tree/main/ping
https://github.com/katzenpost/katzenpost/tree/main/ping
https://github.com/katzenpost/katzenpost/tree/main/ping
https://github.com/katzenpost/katzenpost/tree/main/ping
https://github.com/katzenpost/katzen
https://github.com/katzenpost/katzen
https://github.com/katzenpost/katzen
https://github.com/katzenpost/katzen
https://github.com/katzenpost/status
https://github.com/katzenpost/status
https://github.com/katzenpost/status
https://github.com/katzenpost/status
https://github.com/katzenpost/worldmap
https://github.com/katzenpost/worldmap
https://github.com/katzenpost/worldmap
https://toml.io/en/v1.0.0
https://toml.io/en/v1.0.0
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html

Components and configura-
tion of the Katzenpost mixnet

Dirauth: Server section

The Server section configures mandatory basic parameters for each directory authority.

[Server]
 Identifier = "auth1"
 WireKEMScheme = "xwing"
 PKISignatureScheme = "Ed25519 Sphincs+"
 Addresses = ["tcp://127.0.0.1:30001"]
 DataDir = "/dirauth_mixnet/auth1"

• Identifier

Specifies the human-readable identifier for a node, and must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEMScheme

Specifies the key encapsulation mechanism (KEM) scheme for the PQ Noise [https://eprint.i-
acr.org/2022/539]-based wire protocol (link layer) that nodes use to communicate with each other.
PQ Noise is a post-quantum variation of the Noise protocol framework [https://noiseprotocol.org/],
which algebraically transforms ECDH handshake patterns into KEM encapsulate/decapsulate op-
erations.

This configuration option supports the optional use of hybrid post-quantum cryptography to
strengthen security. The following KEM schemes are supported:

• Classical: "x25519", "x448"

Note

X25519 and X448 are actually non-interactive key-exchanges (NIKEs), not KEMs. Katzen-
post uses a hashed ElGamal cryptographic construction to convert them from NIKEs to
KEMs.

• Post-quantum: "mlkem768","sntrup4591761", "frodo640shake", "mceliece348864",
"mceliece348864f", "mceliece460896", "mceliece460896f", "mceliece6688128",
"mceliece6688128f", "mceliece6960119", "mceliece6960119f", "mceliece8192128",
"mceliece8192128f", "CTIDH511", "CTIDH512", "CTIDH1024", "CTIDH2048",

• Hybrid post-quantum: "xwing", "Kyber768-X25519", "MLKEM768-X25519", "MLKEM768-
X448", "FrodoKEM-640-SHAKE-X448", "sntrup4591761-X448", "mceliece348864-
X25519", "mceliece348864f-X25519", "mceliece460896-X25519", "mceliece460896f-
X25519", "mceliece6688128-X25519", "mceliece6688128f-X25519", "mceliece6960119-
X25519", "mceliece6960119f-X25519", "mceliece8192128-X25519", "mceliece8192128f-
X25519", "CTIDH512-X25519", "CTIDH512-X25519"

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme which will be used by all components of the mix
network when interacting with the PKI system. Mix nodes sign their descriptors using this signature
scheme, and dirauth nodes similarly sign PKI documents using the same scheme.

7

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/

Components and configura-
tion of the Katzenpost mixnet

The following signature schemes are supported: "ed25519", "ed448", "Ed25519 Sphincs+",
"Ed448-Sphincs+", "Ed25519-Dilithium2", "Ed448-Dilithium3"

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol, IP
address, and port number that the node will bind to for incoming connections. Katzenpost sup-
ports URLs with that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

• DataDir

Specifies the absolute path to a node's state directory. This is where persistence.db is written
to disk and where a node stores its cryptographic key materials when started with the "-g" com-
mand-line option.

Type: string

Required: Yes

Dirauth: Authorities section

An Authorities section is configured for each peer authority. We recommend using TOML's style
[https://quickref.me/toml.html] for multi-line quotations for key materials.

[[Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = """
-----BEGIN ED25519 PUBLIC KEY-----
dYpXpbozjFfqhR45ZC2q97SOOsXMANdHaEdXrP42CJk=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """
-----BEGIN XWING PUBLIC KEY-----
ooQBPYNdmfwnxXmvnljPA2mG5gWgurfHhbY87DMRY2tbMeZpinJ5BlSiIecprnmm
QqxcS9o36IS62SVMlOUkw+XEZGVvc9wJqHpgEgVJRAs1PCR8cUAdM6QIYLWt/lkf
SPKDCtZ3GiSIOzMuaglo2tarIPEv1AY7r9B0xXOgSKMkGyBkCfw1VBZf46MM26NL
...
gHtNyQJnXski52O03JpZRIhR40pFOhAAcMMAZDpMTVoxlcdR6WA4SlBiSceeJBgY
Yp9PlGhCimx9am99TrdLoLCdTHB6oowt8tss3POpIOxaSlguyeym/sBhkUrnXOgN
ldMtDsvvc9KUfE4I0+c+XQ==
-----END XWING PUBLIC KEY-----
 """
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30001"]

• Identifier

Specifies the human-readable identifier for the node which must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

8

https://quickref.me/toml.html
https://quickref.me/toml.html

Components and configura-
tion of the Katzenpost mixnet

Type: string

Required: Yes

• IdentityPublicKey

String containing the node's public identity key in PEM format. IdentityPublicKey is the
node's permanent identifier and is used to verify cryptographic signatures produced by its private
identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme used by all directory authority nodes. PKISigna-
tureScheme must match the scheme specified in the Server section of the configuration.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer's public link-layer key in PEM format. LinkPublicKey must match
the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

Specifies the key encapsulation mechanism (KEM) scheme for the PQ Noise [https://eprint.i-
acr.org/2022/539]-based wire protocol (link layer) that nodes use to communicate with each other.
PQ Noise is a post-quantum variation of the Noise protocol framework [https://noiseprotocol.org/],
which algebraically transforms ECDH handshake patterns into KEM encapsulate/decapsulate op-
erations.

This configuration option supports the optional use of hybrid post-quantum cryptography to
strengthen security. The following KEM schemes are supported:

• Classical: "x25519", "x448"

Note

X25519 and X448 are actually non-interactive key-exchanges (NIKEs), not KEMs. Katzen-
post uses a hashed ElGamal cryptographic construction to convert them from NIKEs to
KEMs.

• Post-quantum: "mlkem768","sntrup4591761", "frodo640shake", "mceliece348864",
"mceliece348864f", "mceliece460896", "mceliece460896f", "mceliece6688128",
"mceliece6688128f", "mceliece6960119", "mceliece6960119f", "mceliece8192128",
"mceliece8192128f", "CTIDH511", "CTIDH512", "CTIDH1024", "CTIDH2048",

• Hybrid post-quantum: "xwing", "Kyber768-X25519", "MLKEM768-X25519", "MLKEM768-
X448", "FrodoKEM-640-SHAKE-X448", "sntrup4591761-X448", "mceliece348864-
X25519", "mceliece348864f-X25519", "mceliece460896-X25519", "mceliece460896f-
X25519", "mceliece6688128-X25519", "mceliece6688128f-X25519", "mceliece6960119-

9

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/

Components and configura-
tion of the Katzenpost mixnet

X25519", "mceliece6960119f-X25519", "mceliece8192128-X25519", "mceliece8192128f-
X25519", "CTIDH512-X25519", "CTIDH512-X25519"

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol, IP
address, and port number that the node will bind to for incoming connections. Katzenpost sup-
ports URLs with that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

Dirauth: Logging section

The Logging configuration section controls logging behavior across Katzenpost.

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative to the DataDir specified
in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO | DEBUG.

Type: string

Required: No

Warning

The DEBUG log level is unsafe for production use.

Dirauth: Parameters section

The Parameters section contains the network parameters.

10

Components and configura-
tion of the Katzenpost mixnet

[Parameters]
 SendRatePerMinute = 0
 Mu = 0.005
 MuMaxDelay = 1000
 LambdaP = 0.001
 LambdaPMaxDelay = 1000
 LambdaL = 0.0005
 LambdaLMaxDelay = 1000
 LambdaD = 0.0005
 LambdaDMaxDelay = 3000
 LambdaM = 0.0005
 LambdaG = 0.0
 LambdaMMaxDelay = 100
 LambdaGMaxDelay = 100

• SendRatePerMinute

Specifies the maximum allowed rate of packets per client per gateway node. Rate limiting is done
on the gateway nodes.

Type: uint64

Required: Yes

• Mu

Specifies the inverse of the mean of the exponential distribution from which the Sphinx packet per-
hop mixing delay will be sampled.

Type: float64

Required: Yes

• MuMaxDelay

Specifies the maximum Sphinx packet per-hop mixing delay in milliseconds.

Type: uint64

Required: Yes

• LambdaP

Specifies the inverse of the mean of the exponential distribution that clients sample to determine
the time interval between sending messages, whether actual messages from the FIFO egress queue
or decoy messages if the queue is empty.

Type: float64

Required: Yes

• LambdaPMaxDelay

Specifies the maximum send delay interval for LambdaP in milliseconds.

Type: uint64

Required: Yes

• LambdaL
11

Components and configura-
tion of the Katzenpost mixnet

Specifies the inverse of the mean of the exponential distribution that clients sample to determine
the delay interval between loop decoys.

Type: float64

Required: Yes

• LambdaLMaxDelay

Specifies the maximum send delay interval for LambdaL in milliseconds.

Type: uint64

Required: Yes

• LambdaD

LambdaD is the inverse of the mean of the exponential distribution that clients sample to determine
the delay interval between decoy drop messages.

Type: float64

Required: Yes

• LambdaDMaxDelay

Specifies the maximum send interval in for LambdaD in milliseconds.

Type: uint64

Required: Yes

• LambdaM

LambdaM is the inverse of the mean of the exponential distribution that mix nodes sample to de-
termine the delay between mix loop decoys.

Type: float64

Required: Yes

• LambdaG

LambdaG is the inverse of the mean of the exponential distribution that gateway nodes to select the
delay between gateway node decoys.

Warning

Do not set this value manually in the TOML configuration file. The field is used internally by
the dirauth server state machine.

Type: float64

Required: Yes

• LambdaMMaxDelay

Specifies the maximum delay for LambdaM in milliseconds.

Type: uint64

Required: Yes

12

Components and configura-
tion of the Katzenpost mixnet

• LambdaGMaxDelay

Specifies the maximum delay for LambdaG in milliseconds.

Type: uint64

Required: Yes

Dirauth: Debug section

[Debug]
 Layers = 3
 MinNodesPerLayer = 1
 GenerateOnly = false

• Layers

Specifies the number of non-service-provider layers in the network topology.

Type: int

Required: Yes

• MinNodesrPerLayer

Specifies the minimum number of nodes per layer required to form a valid consensus document.

Type: int

Required: Yes

• GenerateOnly

If true, the server halts and cleans up the data directory immediately after long-term key generation.

Type: bool

Required: No

Dirauth: Mixes sections

The Mixes configuration sections list mix nodes that are known to the authority.

[[Mixes]]
 Identifier = "mix1"
 IdentityPublicKeyPem = "../mix1/identity.public.pem"

[[Mixes]]
 Identifier = "mix2"
 IdentityPublicKeyPem = "../mix2/identity.public.pem"

[[Mixes]]
 Identifier = "mix3"
 IdentityPublicKeyPem = "../mix3/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a mix node, and must be unique per mixnet. The iden-
tifier can be an FQDN but does not have to be.

Type: string

13

Components and configura-
tion of the Katzenpost mixnet

Required: Yes

• IdentityPublicKeyPem

Path and file name of a mix node's public identity signing key, also known as the identity key, in
PEM format.

Type: string

Required: Yes

Dirauth: GatewayNodes section

The GatewayNodes sections list gateway nodes that are known to the authority.

[[GatewayNodes]]
 Identifier = "gateway1"
 IdentityPublicKeyPem = "../gateway1/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a gateway node, and must be unique per mixnet. Iden-
tifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKeyPem

Path and file name of a gateway node's public identity signing key, also known as the identity key,
in PEM format.

Type: string

Required: Yes

Dirauth: ServiceNodes sections

The ServiceNodes sections list service nodes that are known to the authority.

[[ServiceNodes]]
 Identifier = "servicenode1"
 IdentityPublicKeyPem = "../servicenode1/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a service node, and must be unique per mixnet. Identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKeyPem

Path and file name of a service node's public identity signing key, also known as the identity key,
in PEM format.

Type: string

Required: Yes

14

Components and configura-
tion of the Katzenpost mixnet

Dirauth: Topology section

The Topology section defines the layers of the mix network and the mix nodes in each layer.

[Topology]

 [[Topology.Layers]]

 [[Topology.Layers.Nodes]]
 Identifier = "mix1"
 IdentityPublicKeyPem = "../mix1/identity.public.pem"

 [[Topology.Layers]]

 [[Topology.Layers.Nodes]]
 Identifier = "mix2"
 IdentityPublicKeyPem = "../mix2/identity.public.pem"

 [[Topology.Layers]]

 [[Topology.Layers.Nodes]]
 Identifier = "mix3"
 IdentityPublicKeyPem = "../mix3/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a node, and must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

• IdentityPublicKeyPem

Path and file name of a mix node's public identity signing key, also known as the identity key, in
PEM format.

Type: string

Required: Yes

Dirauth: SphinxGeometry section

Sphinx is an encrypted nested-packet format designed primarily for mixnets. The original Sphinx paper
[https://www.freehaven.net/anonbib/cache/DBLP:conf/sp/DanezisG09.pdf] described a non-interac-
tive key exchange (NIKE) employing classical encryption. The Katzenpost implementation strongly
emphasizes configurability, supporting key encapsulation mechanisms (KEMs) as well as NIKEs, and
enabling the use of either classical or hybrid post-quantum cryptography. Hybrid constructions offset
the newness of post-quantum algorithms by offering heavily tested classical algorithms as a fallback.

Note

Sphinx, the nested-packet format, should not be confused with Sphincs or Sphincs+ [http://sphinc-
s.org/index.html], which are post-quantum signature schemes.

Katzenpost Sphinx also relies on the following classical cryptographic primitives:

• CTR-AES256, a stream cipher

• HMAC-SHA256, a message authentication code (MAC) function

• HKDF-SHA256, a key derivation function (KDF)

15

https://www.freehaven.net/anonbib/cache/DBLP:conf/sp/DanezisG09.pdf
https://www.freehaven.net/anonbib/cache/DBLP:conf/sp/DanezisG09.pdf
http://sphincs.org/index.html
http://sphincs.org/index.html
http://sphincs.org/index.html

Components and configura-
tion of the Katzenpost mixnet

• AEZv5, a strong pseudorandom permutation (SPRP)

All dirauths must be configured to use the same SphinxGeometry parameters. Any geometry not
advertised by the PKI document will fail. Each dirauth publishes the hash of its SphinxGeometry
parameters in the PKI document for validation by its peer dirauths.

The SphinxGeometry section defines parameters for the Sphinx encrypted nested-packet format
used internally by Katzenpost.

Warning

The values in the SphinxGeometry configuration section must be programmatically generated
by gensphinx. Many of the parameters are interdependent and cannot be individually modified.
Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which computes the Sphinx geom-
etry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node's configuration file, as shown
below. For more information, see Appendix: Using gensphinx [https://katzenpost.network/docs/ad-
min_guide/gensphinx.html].

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because packet headers hold desti-
nation information for each hop, the size of the header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

16

https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html

Components and configura-
tion of the Katzenpost mixnet

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

17

Components and configura-
tion of the Katzenpost mixnet

The NextNodeHopLength is derived from the largest routing-information block that we expect
to encounter. Other packets have NextNodeHop + NodeDelay sections, or a Recipient sec-
tion, both of which are shorter.

Type: int

Required: Yes

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Configuring mix nodes
The following configuration is drawn from the reference implementation in katzenpost/dock-
er/dirauth_mixnet/mix1/katzenpost.toml. In a real-world mixnet, the component
hosts would not be sharing a single IP address. For more information about the test mixnet, see Using
the Katzenpost Docker test network [https://katzenpost.network/docs/admin_guide/docker.html].

Table 3. Mix node configuration sections

Mix node: Server section

Mix node: Logging section

Mix node: PKI section

Mix node: Management section

Mix node: SphinxGeometry section

Mix node: Debug section

Mix node: Server section

The Server section configures mandatory basic parameters for each server node.

[Server]
 Identifier = "mix1"
 WireKEM = "xwing"

18

https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html

Components and configura-
tion of the Katzenpost mixnet

 PKISignatureScheme = "Ed25519"
 Addresses = ["127.0.0.1:30008"]
 OnlyAdvertiseAltAddresses = false
 MetricsAddress = "127.0.0.1:30009"
 DataDir = "/dirauth_mixnet/mix1"
 IsGatewayNode = false
 IsServiceNode = false
 [Server.AltAddresses]

• Identifier

Specifies the human-readable identifier for a node, and must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEM

WireKEM specifies the key encapsulation mechanism (KEM) scheme for the PQ Noise [https://
eprint.iacr.org/2022/539]-based wire protocol (link layer) that nodes use to communicate with each
other. PQ Noise is a post-quantum variation of the Noise protocol framework [https://noiseproto-
col.org/], which algebraically transforms ECDH handshake patterns into KEM encapsulate/decap-
sulate operations.

This configuration option supports the optional use of hybrid post-quantum cryptography to
strengthen security. The following KEM schemes are supported:

• Classical: "x25519", "x448"

Note

X25519 and X448 are actually non-interactive key-exchanges (NIKEs), not KEMs. Katzen-
post uses a hashed ElGamal cryptographic construction to convert them from NIKEs to
KEMs.

• Post-quantum: "mlkem768","sntrup4591761", "frodo640shake", "mceliece348864",
"mceliece348864f", "mceliece460896", "mceliece460896f", "mceliece6688128",
"mceliece6688128f", "mceliece6960119", "mceliece6960119f", "mceliece8192128",
"mceliece8192128f", "CTIDH511", "CTIDH512", "CTIDH1024", "CTIDH2048",

• Hybrid post-quantum: "xwing", "Kyber768-X25519", "MLKEM768-X25519", "MLKEM768-
X448", "FrodoKEM-640-SHAKE-X448", "sntrup4591761-X448", "mceliece348864-
X25519", "mceliece348864f-X25519", "mceliece460896-X25519", "mceliece460896f-
X25519", "mceliece6688128-X25519", "mceliece6688128f-X25519", "mceliece6960119-
X25519", "mceliece6960119f-X25519", "mceliece8192128-X25519", "mceliece8192128f-
X25519", "CTIDH512-X25519", "CTIDH512-X25519"

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all components of the mix network
when interacting with the PKI system. Mix nodes sign their descriptors using this signature scheme,
and dirauth nodes similarly sign PKI documents using the same scheme.

The following signature schemes are supported:

19

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/
https://noiseprotocol.org/

Components and configura-
tion of the Katzenpost mixnet

• Classical: "ed25519", "ed448"

• Hybrid post-quantum: "Ed25519 Sphincs+", "Ed448-Sphincs+", "Ed25519-Dilithium2",
"Ed448-Dilithium3"

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol, IP
address, and port number that the server will bind to for incoming connections. Katzenpost sup-
ports URLs with that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

• BindAddresses

If true, allows setting of listener addresses that the server will bind to and accept connections on.
These addresses are not advertised in the PKI.

Type: bool

Required: No

• MetricsAddress

Specifies the address/port to bind the Prometheus metrics endpoint to.

Type: string

Required: No

• DataDir

Specifies the absolute path to a node's state directory. This is where persistence.db is written to disk
and where a node stores its cryptographic key materials when started with the "-g" commmand-line
option.

Type: string

Required: Yes

• IsGatewayNode

If true, the server is a gateway node.

Type: bool

Required: No

• IsServiceNode

If true, the server is a service node.

Type: bool

Required: No

20

Components and configura-
tion of the Katzenpost mixnet

Mix node: Logging section

The Logging configuration section controls logging behavior across Katzenpost.

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative to the DataDir specified
in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO | DEBUG.

Type: string

Required: No

Warning

The DEBUG log level is unsafe for production use.

Mix node: PKI section

The PKI section contains the directory authority configuration for a mix, gateway, or service node.

[PKI]
[PKI.dirauth]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
tqN6tpOVotHWXKCszVn2kS7vAZjQpvJjQF3Qz/Qwhyg=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
JnJ8ztQEIjAkKJcpuZvJAdkWjBim/5G5d8yoosEQHeGJeeBqNPdm2AitUbpiQPcd
tNCo9DxuC9Ieqmsfw0YpV6AtOOsaInA6QnHDYcuBfZcQL5MU4+t2TzpBZQYlrSED
hPCKrAG+8GEUl6akseG371WQzEtPpEWWCJCJOiS/VDFZT7eKrldlumN6gfiB84sR
...

21

Components and configura-
tion of the Katzenpost mixnet

arFh/WKwYJUj+aGBsFYSqGdzC6MdY4x/YyFe2ze0MJEjThQE91y1d/LCQ3Sb7Ri+
u6PBi3JU2qzlPEejDKwK0t5tMNEAkq8iNrpRTdD/hS0gR+ZIN8Z9QKh7Xf94FWG2
H+r8OaqImQhgHabrWRDyLg==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30001"]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
O51Ty2WLu4C1ETMa29s03bMXV72gnjJfTfwLV++LVBI=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
TtQkg2XKUnY602FFBaPJ+zpN0Twy20cwyyFxh7FNUjaXA9MAJXs0vUwFbJc6BjYv
f+olKnlIKFSmDvcF74U6w1F0ObugwTNKNxeYKPKhX4FiencUbRwkHoYHdtZdSctz
TKy08qKQyCAccqCRpdo6ZtYXPAU+2rthjYTOL7Zn+7SHUKCuJClcPnvEYjVcJxtZ
...
ubJIe5U4nMJbBkOqr7Kq6niaEkiLODa0tkpB8tKMYTMBdcYyHSXCzpo7U9sb6LAR
HktiTBDtRXviu2vbw7VRXhkMW2kjYZDtReQ5sAse04DvmD49zgTp1YxYW+wWFaL3
37X7/SNuLdHX4PHZXIWHBQ==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30002"]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
zQvydRYJq3npeLcg1NqIf+SswEKE5wFmiwNsI9Z1whQ=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """
-----BEGIN XWING PUBLIC KEY-----
OYK9FiC53xwZ1VST3jDOO4tR+cUMSVRSekmigZMChSjDCPZbKut8TblxtlUfc/yi
Ugorz4NIvYPMWUt3QPwS2UWq8/HMWXNGPUiAevg12+oV+jOJXaJeCfY24UekJnSw
TNcdGaFZFSR0FocFcPBBnrK1M2B8w8eEUKQIsXRDM3x/8aRIuDif+ve8rSwpgKeh
...
OdVD3yw7OOS8uPZLORGQFyJbHtVmFPVvwja4G/o2gntAoHUZ2LiJJakpVhhlSyrI
yuzvwwFtZVfWtNb5gAKZCyg0aduR3qgd7MPerRF+YopZk3OCRpC02YxfUZrHv398
FZWJFK0R8iU52CEUxVpXTA==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30003"]

• Identifier

Specifies the human-readable identifier for a node, which must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

22

Components and configura-
tion of the Katzenpost mixnet

String containing the node's public identity key in PEM format. IdentityPublicKey is the
node's permanent identifier and is used to verify cryptographic signatures produced by its private
identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all components of the mix network
when interacting with the PKI system. Mix nodes sign their descriptors using this signature scheme,
and dirauth nodes similarly sign PKI documents using the same scheme.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer's public link-layer key in PEM format. LinkPublicKey must match
the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

The name of the wire protocol key-encapsulation mechanism (KEM) to use.

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol,
IP address, and port number that the server will bind to for incoming connections. Katzenpost
supports URLs that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

Mix node: Management section

The Management section specifies connectivity information for the Katzenpost control protocol
which can be used to make run-time configuration changes. A configuration resembles the following:

[Management]
 Enable = false
 Path = "/dirauth_mixnet/mix1/management_sock"

• Enable

If true, the management interface is enabled.

Type: bool

23

Components and configura-
tion of the Katzenpost mixnet

Required: No

• Path

Specifies the path to the management interface socket. If left empty, then management_sock is
located in the configuration's defined DataDir>.

Type: string

Required: No

Mix node: SphinxGeometry section

The SphinxGeometry section defines parameters for the Sphinx encrypted nested-packet format
used internally by Katzenpost.

Warning

The values in the SphinxGeometry configuration section must be programmatically generated
by gensphinx. Many of the parameters are interdependent and cannot be individually modified.
Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which computes the Sphinx geom-
etry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node's configuration file, as shown
below. For more information, see Appendix: Using gensphinx [https://katzenpost.network/docs/ad-
min_guide/gensphinx.html].

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

Required: Yes

• NrHops

24

https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html

Components and configura-
tion of the Katzenpost mixnet

The number of hops a Sphinx packet takes through the mixnet. Because packet headers hold desti-
nation information for each hop, the size of the header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

25

Components and configura-
tion of the Katzenpost mixnet

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information block that we expect
to encounter. Other packets have NextNodeHop + NodeDelay sections, or a Recipient sec-
tion, both of which are shorter.

Type: int

Required: Yes

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Mix node: Debug section

The Debug section is the Katzenpost server debug configuration for advanced tuning.

[Debug]
 NumSphinxWorkers = 16
 NumServiceWorkers = 3
 NumGatewayWorkers = 3
 NumKaetzchenWorkers = 3
 SchedulerExternalMemoryQueue = false
 SchedulerQueueSize = 0
 SchedulerMaxBurst = 16
 UnwrapDelay = 250
 GatewayDelay = 500
 ServiceDelay = 500

26

Components and configura-
tion of the Katzenpost mixnet

 KaetzchenDelay = 750
 SchedulerSlack = 150
 SendSlack = 50
 DecoySlack = 15000
 ConnectTimeout = 60000
 HandshakeTimeout = 30000
 ReauthInterval = 30000
 SendDecoyTraffic = false
 DisableRateLimit = false
 GenerateOnly = false

• NumSphinxWorkers

Specifies the number of worker instances to use for inbound Sphinx packet processing.

Type: int

Required: No

• NumProviderWorkers

Specifies the number of worker instances to use for provider specific packet processing.

Type: int

Required: No

• NumKaetzchenWorkers

Specifies the number of worker instances to use for Kaetzchen-specific packet processing.

Type: int

Required: No

• SchedulerExternalMemoryQueue

If true, the experimental disk-backed external memory queue is enabled.

Type: bool

Required: No

• SchedulerQueueSize

Specifies the maximum scheduler queue size before random entries will start getting dropped. A
value less than or equal to zero is treated as unlimited.

Type: int

Required: No

• SchedulerMaxBurst

Specifies the maximum number of packets that will be dispatched per scheduler wakeup event.

Type:

Required: No

• UnwrapDelay

Specifies the maximum unwrap delay due to queueing in milliseconds.

27

Components and configura-
tion of the Katzenpost mixnet

Type: int

Required: No

• GatewayDelay

Specifies the maximum gateway node worker delay due to queueing in milliseconds.

Type: int

Required: No

• ServiceDelay

Specifies the maximum provider delay due to queueing in milliseconds.

Type: int

Required: No

• KaetzchenDelay

Specifies the maximum kaetzchen delay due to queueing in milliseconds.

Type: int

Required: No

• SchedulerSlack

Specifies the maximum scheduler slack due to queueing and/or processing in milliseconds.

Type: int

Required: No

• SendSlack

Specifies the maximum send-queue slack due to queueing and/or congestion in milliseconds.

Type: int

Required: No

• DecoySlack

Specifies the maximum decoy sweep slack due to external delays such as latency before a loop
decoy packet will be considered lost.

Type: int

Required: No

• ConnectTimeout

Specifies the maximum time a connection can take to establish a TCP/IP connection in milliseconds.

Type: int

Required: No

• HandshakeTimeout

28

Components and configura-
tion of the Katzenpost mixnet

Specifies the maximum time a connection can take for a link-protocol handshake in milliseconds.

Type: int

Required: No

• ReauthInterval

Specifies the interval at which a connection will be reauthenticated in milliseconds.

Type: int

Required: No

• SendDecoyTraffic

If true, decoy traffic is enabled. This parameter is experimental and untuned, and is disabled by
default.

Note

This option will be removed once decoy traffic is fully implemented.

Type: bool

Required: No

• DisableRateLimit

If true, the per-client rate limiter is disabled.

Note

This option should only be used for testing.

Type: bool

Required: No

• GenerateOnly

If true, the server immediately halts and cleans up after long-term key generation.

Type: bool

Required: No

Configuring gateway nodes
The following configuration is drawn from the reference implementation in katzenpost/dock-
er/dirauth_mixnet/gateway1/katzenpost.toml. In a real-world mixnet, the compo-
nent hosts would not be sharing a single IP address. For more information about the test mixnet, see Us-
ing the Katzenpost Docker test network [https://katzenpost.network/docs/admin_guide/docker.html].

Table 4. Gateway node configuration sections

Gateway node: Server section

Gateway node: Logging section

Gateway node: Gateway section

29

https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html

Components and configura-
tion of the Katzenpost mixnet

Gateway node: PKI section

Gateway node: Management section

Gateway node: SphinxGeometry section

Gateway node: Debug section

Gateway node: Server section

The Server section configures mandatory basic parameters for each server node.

[Server]
 Identifier = "gateway1"
 WireKEM = "xwing"
 PKISignatureScheme = "Ed25519"
 Addresses = ["127.0.0.1:30004"]
 OnlyAdvertiseAltAddresses = false
 MetricsAddress = "127.0.0.1:30005"
 DataDir = "/dirauth_mixnet/gateway1"
 IsGatewayNode = true
 IsServiceNode = false
 [Server.AltAddresses]
 TCP = ["localhost:30004"]

• Identifier

Specifies the human-readable identifier for a node, and must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEM

WireKEM specifies the key encapsulation mechanism (KEM) scheme for the PQ Noise [https://
eprint.iacr.org/2022/539]-based wire protocol (link layer) that nodes use to communicate with each
other. PQ Noise is a post-quantum variation of the Noise protocol framework [https://noiseproto-
col.org/], which algebraically transforms ECDH handshake patterns into KEM encapsulate/decap-
sulate operations.

This configuration option supports the optional use of hybrid post-quantum cryptography to
strengthen security. The following KEM schemes are supported:

• Classical: "x25519", "x448"

Note

X25519 and X448 are actually non-interactive key-exchanges (NIKEs), not KEMs. Katzen-
post uses a hashed ElGamal cryptographic construction to convert them from NIKEs to
KEMs.

• Post-quantum: "mlkem768","sntrup4591761", "frodo640shake", "mceliece348864",
"mceliece348864f", "mceliece460896", "mceliece460896f", "mceliece6688128",
"mceliece6688128f", "mceliece6960119", "mceliece6960119f", "mceliece8192128",
"mceliece8192128f", "CTIDH511", "CTIDH512", "CTIDH1024", "CTIDH2048",

• Hybrid post-quantum: "xwing", "Kyber768-X25519", "MLKEM768-X25519", "MLKEM768-
X448", "FrodoKEM-640-SHAKE-X448", "sntrup4591761-X448", "mceliece348864-
X25519", "mceliece348864f-X25519", "mceliece460896-X25519", "mceliece460896f-

30

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/
https://noiseprotocol.org/

Components and configura-
tion of the Katzenpost mixnet

X25519", "mceliece6688128-X25519", "mceliece6688128f-X25519", "mceliece6960119-
X25519", "mceliece6960119f-X25519", "mceliece8192128-X25519", "mceliece8192128f-
X25519", "CTIDH512-X25519", "CTIDH512-X25519"

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all components of the mix network
when interacting with the PKI system. Mix nodes sign their descriptors using this signature scheme,
and dirauth nodes similarly sign PKI documents using the same scheme.

The following signature schemes are supported:

• Classical: "ed25519", "ed448"

• Hybrid post-quantum: "Ed25519 Sphincs+", "Ed448-Sphincs+", "Ed25519-Dilithium2",
"Ed448-Dilithium3"

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol, IP
address, and port number that the server will bind to for incoming connections. Katzenpost sup-
ports URLs with that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

• BindAddresses

If true, allows setting of listener addresses that the server will bind to and accept connections on.
These addresses are not advertised in the PKI.

Type: bool

Required: No

• MetricsAddress

Specifies the address/port to bind the Prometheus metrics endpoint to.

Type: string

Required: No

• DataDir

Specifies the absolute path to a node's state directory. This is where persistence.db is written to disk
and where a node stores its cryptographic key materials when started with the "-g" commmand-line
option.

Type: string

Required: Yes

31

Components and configura-
tion of the Katzenpost mixnet

• IsGatewayNode

If true, the server is a gateway node.

Type: bool

Required: No

• IsServiceNode

If true, the server is a service node.

Type: bool

Required: No

Gateway node: Logging section

The Logging configuration section controls logging behavior across Katzenpost.

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative to the DataDir specified
in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO | DEBUG.

Type: string

Required: No

Warning

The DEBUG log level is unsafe for production use.

Gateway node: Gateway section

The Gateway section of the configuration is required for configuring a Gateway node. The section
must contain UserDB and SpoolDB definitions. Bolt [https://github.com/boltdb/bolt] is an embed-

32

https://github.com/boltdb/bolt
https://github.com/boltdb/bolt

Components and configura-
tion of the Katzenpost mixnet

ded database library for the Go programming language that Katzenpost has used in the past for its user
and spool databases. Because Katzenpost currently persists data on Service nodes instead of Gateways,
these databases will probably be deprecated in favour of in-memory concurrency structures. In the
meantime, it remains necessary to configure a Gateway node as shown below, only changing the file
paths as needed:

[Gateway]
 [Gateway.UserDB]
 Backend = "bolt"
 [Gateway.UserDB.Bolt]
 UserDB = "/dirauth_mixnet/gateway1/users.db"
 [Gateway.SpoolDB]
 Backend = "bolt"
 [Gateway.SpoolDB.Bolt]
 SpoolDB = "/dirauth_mixnet/gateway1/spool.db"

Gateway node: PKI section

The PKI section contains the directory authority configuration for a mix, gateway, or service node.

[PKI]
[PKI.dirauth]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
tqN6tpOVotHWXKCszVn2kS7vAZjQpvJjQF3Qz/Qwhyg=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
JnJ8ztQEIjAkKJcpuZvJAdkWjBim/5G5d8yoosEQHeGJeeBqNPdm2AitUbpiQPcd
tNCo9DxuC9Ieqmsfw0YpV6AtOOsaInA6QnHDYcuBfZcQL5MU4+t2TzpBZQYlrSED
hPCKrAG+8GEUl6akseG371WQzEtPpEWWCJCJOiS/VDFZT7eKrldlumN6gfiB84sR
...
arFh/WKwYJUj+aGBsFYSqGdzC6MdY4x/YyFe2ze0MJEjThQE91y1d/LCQ3Sb7Ri+
u6PBi3JU2qzlPEejDKwK0t5tMNEAkq8iNrpRTdD/hS0gR+ZIN8Z9QKh7Xf94FWG2
H+r8OaqImQhgHabrWRDyLg==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30001"]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
O51Ty2WLu4C1ETMa29s03bMXV72gnjJfTfwLV++LVBI=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
TtQkg2XKUnY602FFBaPJ+zpN0Twy20cwyyFxh7FNUjaXA9MAJXs0vUwFbJc6BjYv
f+olKnlIKFSmDvcF74U6w1F0ObugwTNKNxeYKPKhX4FiencUbRwkHoYHdtZdSctz
TKy08qKQyCAccqCRpdo6ZtYXPAU+2rthjYTOL7Zn+7SHUKCuJClcPnvEYjVcJxtZ
...
ubJIe5U4nMJbBkOqr7Kq6niaEkiLODa0tkpB8tKMYTMBdcYyHSXCzpo7U9sb6LAR
HktiTBDtRXviu2vbw7VRXhkMW2kjYZDtReQ5sAse04DvmD49zgTp1YxYW+wWFaL3
37X7/SNuLdHX4PHZXIWHBQ==

33

Components and configura-
tion of the Katzenpost mixnet

-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30002"]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
zQvydRYJq3npeLcg1NqIf+SswEKE5wFmiwNsI9Z1whQ=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """
-----BEGIN XWING PUBLIC KEY-----
OYK9FiC53xwZ1VST3jDOO4tR+cUMSVRSekmigZMChSjDCPZbKut8TblxtlUfc/yi
Ugorz4NIvYPMWUt3QPwS2UWq8/HMWXNGPUiAevg12+oV+jOJXaJeCfY24UekJnSw
TNcdGaFZFSR0FocFcPBBnrK1M2B8w8eEUKQIsXRDM3x/8aRIuDif+ve8rSwpgKeh
...
OdVD3yw7OOS8uPZLORGQFyJbHtVmFPVvwja4G/o2gntAoHUZ2LiJJakpVhhlSyrI
yuzvwwFtZVfWtNb5gAKZCyg0aduR3qgd7MPerRF+YopZk3OCRpC02YxfUZrHv398
FZWJFK0R8iU52CEUxVpXTA==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30003"]

• Identifier

Specifies the human-readable identifier for a node, which must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

String containing the node's public identity key in PEM format. IdentityPublicKey is the
node's permanent identifier and is used to verify cryptographic signatures produced by its private
identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all components of the mix network
when interacting with the PKI system. Mix nodes sign their descriptors using this signature scheme,
and dirauth nodes similarly sign PKI documents using the same scheme.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer's public link-layer key in PEM format. LinkPublicKey must match
the specified WireKEMScheme.

Type: string

34

Components and configura-
tion of the Katzenpost mixnet

Required: Yes

• WireKEMScheme

The name of the wire protocol key-encapsulation mechanism (KEM) to use.

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol,
IP address, and port number that the server will bind to for incoming connections. Katzenpost
supports URLs that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

Gateway node: Management section

The Management section specifies connectivity information for the Katzenpost control protocol
which can be used to make run-time configuration changes. A configuration resembles the following:

[Management]
 Enable = false
 Path = "/dirauth_mixnet/mix1/management_sock"

• Enable

If true, the management interface is enabled.

Type: bool

Required: No

• Path

Specifies the path to the management interface socket. If left empty, then management_sock is
located in the configuration's defined DataDir>.

Type: string

Required: No

Gateway node: SphinxGeometry section

The SphinxGeometry section defines parameters for the Sphinx encrypted nested-packet format
used internally by Katzenpost.

Warning

The values in the SphinxGeometry configuration section must be programmatically generated
by gensphinx. Many of the parameters are interdependent and cannot be individually modified.
Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which computes the Sphinx geom-
etry based on the following user-supplied directives:

35

Components and configura-
tion of the Katzenpost mixnet

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node's configuration file, as shown
below. For more information, see Appendix: Using gensphinx [https://katzenpost.network/docs/ad-
min_guide/gensphinx.html].

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because packet headers hold desti-
nation information for each hop, the size of the header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

36

https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html

Components and configura-
tion of the Katzenpost mixnet

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information block that we expect
to encounter. Other packets have NextNodeHop + NodeDelay sections, or a Recipient sec-
tion, both of which are shorter.

Type: int

Required: Yes

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

37

Components and configura-
tion of the Katzenpost mixnet

The name of the non-interactive key exchange (NIKE) scheme used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Gateway node: Debug section

The Debug section is the Katzenpost server debug configuration for advanced tuning.

[Debug]
 NumSphinxWorkers = 16
 NumServiceWorkers = 3
 NumGatewayWorkers = 3
 NumKaetzchenWorkers = 3
 SchedulerExternalMemoryQueue = false
 SchedulerQueueSize = 0
 SchedulerMaxBurst = 16
 UnwrapDelay = 250
 GatewayDelay = 500
 ServiceDelay = 500
 KaetzchenDelay = 750
 SchedulerSlack = 150
 SendSlack = 50
 DecoySlack = 15000
 ConnectTimeout = 60000
 HandshakeTimeout = 30000
 ReauthInterval = 30000
 SendDecoyTraffic = false
 DisableRateLimit = false
 GenerateOnly = false

• NumSphinxWorkers

Specifies the number of worker instances to use for inbound Sphinx packet processing.

Type: int

Required: No

• NumProviderWorkers

Specifies the number of worker instances to use for provider specific packet processing.

Type: int

Required: No

38

Components and configura-
tion of the Katzenpost mixnet

• NumKaetzchenWorkers

Specifies the number of worker instances to use for Kaetzchen-specific packet processing.

Type: int

Required: No

• SchedulerExternalMemoryQueue

If true, the experimental disk-backed external memory queue is enabled.

Type: bool

Required: No

• SchedulerQueueSize

Specifies the maximum scheduler queue size before random entries will start getting dropped. A
value less than or equal to zero is treated as unlimited.

Type: int

Required: No

• SchedulerMaxBurst

Specifies the maximum number of packets that will be dispatched per scheduler wakeup event.

Type:

Required: No

• UnwrapDelay

Specifies the maximum unwrap delay due to queueing in milliseconds.

Type: int

Required: No

• GatewayDelay

Specifies the maximum gateway node worker delay due to queueing in milliseconds.

Type: int

Required: No

• ServiceDelay

Specifies the maximum provider delay due to queueing in milliseconds.

Type: int

Required: No

• KaetzchenDelay

Specifies the maximum kaetzchen delay due to queueing in milliseconds.

Type: int

Required: No

39

Components and configura-
tion of the Katzenpost mixnet

• SchedulerSlack

Specifies the maximum scheduler slack due to queueing and/or processing in milliseconds.

Type: int

Required: No

• SendSlack

Specifies the maximum send-queue slack due to queueing and/or congestion in milliseconds.

Type: int

Required: No

• DecoySlack

Specifies the maximum decoy sweep slack due to external delays such as latency before a loop
decoy packet will be considered lost.

Type: int

Required: No

• ConnectTimeout

Specifies the maximum time a connection can take to establish a TCP/IP connection in milliseconds.

Type: int

Required: No

• HandshakeTimeout

Specifies the maximum time a connection can take for a link-protocol handshake in milliseconds.

Type: int

Required: No

• ReauthInterval

Specifies the interval at which a connection will be reauthenticated in milliseconds.

Type: int

Required: No

• SendDecoyTraffic

If true, decoy traffic is enabled. This parameter is experimental and untuned, and is disabled by
default.

Note

This option will be removed once decoy traffic is fully implemented.

Type: bool

Required: No

• DisableRateLimit

40

Components and configura-
tion of the Katzenpost mixnet

If true, the per-client rate limiter is disabled.

Note

This option should only be used for testing.

Type: bool

Required: No

• GenerateOnly

If true, the server immediately halts and cleans up after long-term key generation.

Type: bool

Required: No

Configuring service nodes
The following configuration is drawn from the reference implementation in katzenpost/dock-
er/dirauth_mixnet/servicenode1/authority.toml. In a real-world mixnet, the com-
ponent hosts would not be sharing a single IP address. For more information about the test mixnet,
see Using the Katzenpost Docker test network [https://katzenpost.network/docs/admin_guide/dock-
er.html].

Table 5. Mix node configuration sections

Service node: Server section

Service node: Logging section

Service node: ServiceNode section

Service node: PKI section

Service node: Management section

Service node: SphinxGeometry section

Service node: Debug section

Service node: Server section

The Server section configures mandatory basic parameters for each server node.

[Server]
 Identifier = "servicenode1"
 WireKEM = "xwing"
 PKISignatureScheme = "Ed25519"
 Addresses = ["127.0.0.1:30006"]
 OnlyAdvertiseAltAddresses = false
 MetricsAddress = "127.0.0.1:30007"
 DataDir = "/dirauth_mixnet/servicenode1"
 IsGatewayNode = false
 IsServiceNode = true
 [Server.AltAddresses]

• Identifier

Specifies the human-readable identifier for a node, and must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

41

https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html
https://katzenpost.network/docs/admin_guide/docker.html

Components and configura-
tion of the Katzenpost mixnet

Type: string

Required: Yes

• WireKEM

WireKEM specifies the key encapsulation mechanism (KEM) scheme for the PQ Noise [https://
eprint.iacr.org/2022/539]-based wire protocol (link layer) that nodes use to communicate with each
other. PQ Noise is a post-quantum variation of the Noise protocol framework [https://noiseproto-
col.org/], which algebraically transforms ECDH handshake patterns into KEM encapsulate/decap-
sulate operations.

This configuration option supports the optional use of hybrid post-quantum cryptography to
strengthen security. The following KEM schemes are supported:

• Classical: "x25519", "x448"

Note

X25519 and X448 are actually non-interactive key-exchanges (NIKEs), not KEMs. Katzen-
post uses a hashed ElGamal cryptographic construction to convert them from NIKEs to
KEMs.

• Post-quantum: "mlkem768","sntrup4591761", "frodo640shake", "mceliece348864",
"mceliece348864f", "mceliece460896", "mceliece460896f", "mceliece6688128",
"mceliece6688128f", "mceliece6960119", "mceliece6960119f", "mceliece8192128",
"mceliece8192128f", "CTIDH511", "CTIDH512", "CTIDH1024", "CTIDH2048",

• Hybrid post-quantum: "xwing", "Kyber768-X25519", "MLKEM768-X25519", "MLKEM768-
X448", "FrodoKEM-640-SHAKE-X448", "sntrup4591761-X448", "mceliece348864-
X25519", "mceliece348864f-X25519", "mceliece460896-X25519", "mceliece460896f-
X25519", "mceliece6688128-X25519", "mceliece6688128f-X25519", "mceliece6960119-
X25519", "mceliece6960119f-X25519", "mceliece8192128-X25519", "mceliece8192128f-
X25519", "CTIDH512-X25519", "CTIDH512-X25519"

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all components of the mix network
when interacting with the PKI system. Mix nodes sign their descriptors using this signature scheme,
and dirauth nodes similarly sign PKI documents using the same scheme.

The following signature schemes are supported:

• Classical: "ed25519", "ed448"

• Hybrid post-quantum: "Ed25519 Sphincs+", "Ed448-Sphincs+", "Ed25519-Dilithium2",
"Ed448-Dilithium3"

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol, IP
address, and port number that the server will bind to for incoming connections. Katzenpost sup-

42

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/
https://noiseprotocol.org/

Components and configura-
tion of the Katzenpost mixnet

ports URLs with that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

• BindAddresses

If true, allows setting of listener addresses that the server will bind to and accept connections on.
These addresses are not advertised in the PKI.

Type: bool

Required: No

• MetricsAddress

Specifies the address/port to bind the Prometheus metrics endpoint to.

Type: string

Required: No

• DataDir

Specifies the absolute path to a node's state directory. This is where persistence.db is written to disk
and where a node stores its cryptographic key materials when started with the "-g" commmand-line
option.

Type: string

Required: Yes

• IsGatewayNode

If true, the server is a gateway node.

Type: bool

Required: No

• IsServiceNode

If true, the server is a service node.

Type: bool

Required: No

Service node: Logging section

The Logging configuration section controls logging behavior across Katzenpost.

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

• Disable

If true, logging is disabled.

43

Components and configura-
tion of the Katzenpost mixnet

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative to the DataDir specified
in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO | DEBUG.

Type: string

Required: No

Warning

The DEBUG log level is unsafe for production use.

Service node: ServiceNode section

The ServiceNode section contains configurations for each network service that Katzenpost sup-
ports.

Services, termed Kaetzchen [https://github.com/katzenpost/katzenpost/blob/main/docs/Specifica-
tons/pdf/kaetzchen.pdf], can be divided into built-in and external services. External services are pro-
vided through the CBORPlugin [https://pkg.go.dev/github.com/katzenpost/katzenpost@v0.0.35/serv-
er/cborplugin#ResponseFactory], a Go programming language implementation of the Concise Bina-
ry Object Representation (CBOR) [https://datatracker.ietf.org/doc/html/rfc8949], a binary data serial-
ization format. While native services need simply to be activated, external services are invoked by a
separate command and connected to the mixnet over a Unix socket. The plugin allows mixnet services
to be added in any programming language.

[ServiceNode]

 [[ServiceNode.Kaetzchen]]
 Capability = "echo"
 Endpoint = "+echo"
 Disable = false

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "spool"
 Endpoint = "+spool"
 Command = "/dirauth_mixnet/memspool.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 data_store = "/dirauth_mixnet/servicenode1/memspool.storage"
 log_dir = "/dirauth_mixnet/servicenode1"

 [[ServiceNode.CBORPluginKaetzchen]]

44

https://github.com/katzenpost/katzenpost/blob/main/docs/Specificatons/pdf/kaetzchen.pdf
https://github.com/katzenpost/katzenpost/blob/main/docs/Specificatons/pdf/kaetzchen.pdf
https://github.com/katzenpost/katzenpost/blob/main/docs/Specificatons/pdf/kaetzchen.pdf
https://pkg.go.dev/github.com/katzenpost/katzenpost@v0.0.35/server/cborplugin#ResponseFactory
https://pkg.go.dev/github.com/katzenpost/katzenpost@v0.0.35/server/cborplugin#ResponseFactory
https://pkg.go.dev/github.com/katzenpost/katzenpost@v0.0.35/server/cborplugin#ResponseFactory
https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8949

Components and configura-
tion of the Katzenpost mixnet

 Capability = "pigeonhole"
 Endpoint = "+pigeonhole"
 Command = "/dirauth_mixnet/pigeonhole.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 db = "/dirauth_mixnet/servicenode1/map.storage"
 log_dir = "/dirauth_mixnet/servicenode1"

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "panda"
 Endpoint = "+panda"
 Command = "/dirauth_mixnet/panda_server.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 fileStore = "/dirauth_mixnet/servicenode1/panda.storage"
 log_dir = "/dirauth_mixnet/servicenode1"
 log_level = "INFO"

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "http"
 Endpoint = "+http"
 Command = "/dirauth_mixnet/proxy_server.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 host = "localhost:4242"
 log_dir = "/dirauth_mixnet/servicenode1"
 log_level = "DEBUG"

Common parameters:

• Capability

Specifies the protocol capability exposed by the agent.

Type: string

Required: Yes

• Endpoint

Specifies the provider-side Endpoint where the agent will accept requests. While not required by the
specification, this server only supports Endpoints that are lower-case local parts of an email address.

Type: string

Required: Yes

• Command

Specifies the full path to the external plugin program that implements this Kaetzchen service.

Type: string

Required: Yes

• MaxConcurrency

Specifies the number of worker goroutines to start for this service.

45

Components and configura-
tion of the Katzenpost mixnet

Type: int

Required: Yes

• Config

Specifies extra per-agent arguments to be passed to the agent's initialization routine.

Type: map[string]interface{}

Required: Yes

• Disable

If true, disables a configured agent.

Type: bool

Required: No

Per-service parameters:

• echo

The internal echo service must be enabled on every service node of a production mixnet for decoy
traffic to work properly.

• spool

The spool service supports the catshadow storage protocol, which is required by the Katzen
chat client. The example configuration above shows spool enabled with the setting:

Disable = false

Note

Spool, properly memspool, should not be confused with the spool database on gateway
nodes.

• data_store

Specifies the full path to the service database file.

Type: string

Required: Yes

• log_dir

Specifies the path to the node's log directory.

Type: string

Required: Yes

• pigeonhole

The pigeonhole courier service supports the Blinding-and-Capability scheme (BACAP)-based
unlinkable messaging protocols detailed in Place-holder for research paper link. Most of our
future protocols will use the pigeonhole courier service.

• db

46

Components and configura-
tion of the Katzenpost mixnet

Specifies the full path to the service database file.

Type: string

Required: Yes

• log_dir

Specifies the path to the node's log directory.

Type: string

Required: Yes

• panda

The panda storage and authentication service currently does not work properly.

• fileStore

Specifies the full path to the service database file.

Type: string

Required: Yes

• log_dir

Specifies the path to the node's log directory.

Type: string

Required: Yes

• log_level

Supported values are ERROR | WARNING | NOTICE |INFO | DEBUG.

Warning

The DEBUG log level is unsafe for production use.

Type: string

Required: Yes

Required: Yes

• http

The http service is completely optional, but allows the mixnet to be used as an HTTP proxy. This
may be useful for integrating with existing software systems.

• host

The host name and TCP port of the service.

Type: string

Required: Yes

• log_dir

47

Components and configura-
tion of the Katzenpost mixnet

Specifies the path to the node's log directory.

Type: string

Required: Yes

• log_level

Supported values are ERROR | WARNING | NOTICE |INFO | DEBUG.

Type: string

Required: Yes

Required: Yes

Warning

The DEBUG log level is unsafe for production use.

Type: string

Required: Yes

Service node: PKI section

The PKI section contains the directory authority configuration for a mix, gateway, or service node.

[PKI]
[PKI.dirauth]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
tqN6tpOVotHWXKCszVn2kS7vAZjQpvJjQF3Qz/Qwhyg=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
JnJ8ztQEIjAkKJcpuZvJAdkWjBim/5G5d8yoosEQHeGJeeBqNPdm2AitUbpiQPcd
tNCo9DxuC9Ieqmsfw0YpV6AtOOsaInA6QnHDYcuBfZcQL5MU4+t2TzpBZQYlrSED
hPCKrAG+8GEUl6akseG371WQzEtPpEWWCJCJOiS/VDFZT7eKrldlumN6gfiB84sR
...
arFh/WKwYJUj+aGBsFYSqGdzC6MdY4x/YyFe2ze0MJEjThQE91y1d/LCQ3Sb7Ri+
u6PBi3JU2qzlPEejDKwK0t5tMNEAkq8iNrpRTdD/hS0gR+ZIN8Z9QKh7Xf94FWG2
H+r8OaqImQhgHabrWRDyLg==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30001"]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
O51Ty2WLu4C1ETMa29s03bMXV72gnjJfTfwLV++LVBI=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"

48

Components and configura-
tion of the Katzenpost mixnet

 LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
TtQkg2XKUnY602FFBaPJ+zpN0Twy20cwyyFxh7FNUjaXA9MAJXs0vUwFbJc6BjYv
f+olKnlIKFSmDvcF74U6w1F0ObugwTNKNxeYKPKhX4FiencUbRwkHoYHdtZdSctz
TKy08qKQyCAccqCRpdo6ZtYXPAU+2rthjYTOL7Zn+7SHUKCuJClcPnvEYjVcJxtZ
...
ubJIe5U4nMJbBkOqr7Kq6niaEkiLODa0tkpB8tKMYTMBdcYyHSXCzpo7U9sb6LAR
HktiTBDtRXviu2vbw7VRXhkMW2kjYZDtReQ5sAse04DvmD49zgTp1YxYW+wWFaL3
37X7/SNuLdHX4PHZXIWHBQ==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30002"]

 [[PKI.dirauth.Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----
zQvydRYJq3npeLcg1NqIf+SswEKE5wFmiwNsI9Z1whQ=
-----END ED25519 PUBLIC KEY-----
"""
 PKISignatureScheme = "Ed25519"
 LinkPublicKey = """
-----BEGIN XWING PUBLIC KEY-----
OYK9FiC53xwZ1VST3jDOO4tR+cUMSVRSekmigZMChSjDCPZbKut8TblxtlUfc/yi
Ugorz4NIvYPMWUt3QPwS2UWq8/HMWXNGPUiAevg12+oV+jOJXaJeCfY24UekJnSw
TNcdGaFZFSR0FocFcPBBnrK1M2B8w8eEUKQIsXRDM3x/8aRIuDif+ve8rSwpgKeh
...
OdVD3yw7OOS8uPZLORGQFyJbHtVmFPVvwja4G/o2gntAoHUZ2LiJJakpVhhlSyrI
yuzvwwFtZVfWtNb5gAKZCyg0aduR3qgd7MPerRF+YopZk3OCRpC02YxfUZrHv398
FZWJFK0R8iU52CEUxVpXTA==
-----END XWING PUBLIC KEY-----
"""
 WireKEMScheme = "xwing"
 Addresses = ["127.0.0.1:30003"]

• Identifier

Specifies the human-readable identifier for a node, which must be unique per mixnet. The identifier
can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

String containing the node's public identity key in PEM format. IdentityPublicKey is the
node's permanent identifier and is used to verify cryptographic signatures produced by its private
identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all components of the mix network
when interacting with the PKI system. Mix nodes sign their descriptors using this signature scheme,
and dirauth nodes similarly sign PKI documents using the same scheme.

Type: string

49

Components and configura-
tion of the Katzenpost mixnet

Required: Yes

• LinkPublicKey

String containing the peer's public link-layer key in PEM format. LinkPublicKey must match
the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

The name of the wire protocol key-encapsulation mechanism (KEM) to use.

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the transport protocol,
IP address, and port number that the server will bind to for incoming connections. Katzenpost
supports URLs that start with either "tcp://" or "quic://" such as: ["tcp://192.168.1.1:30001"] and
["quic://192.168.1.1:40001"].

Type: []string

Required: Yes

Service node: Management section

The Management section specifies connectivity information for the Katzenpost control protocol
which can be used to make run-time configuration changes. A configuration resembles the following:

[Management]
 Enable = false
 Path = "/dirauth_mixnet/mix1/management_sock"

• Enable

If true, the management interface is enabled.

Type: bool

Required: No

• Path

Specifies the path to the management interface socket. If left empty, then management_sock is
located in the configuration's defined DataDir>.

Type: string

Required: No

Service node: SphinxGeometry section

The SphinxGeometry section defines parameters for the Sphinx encrypted nested-packet format
used internally by Katzenpost.

50

Components and configura-
tion of the Katzenpost mixnet

Warning

The values in the SphinxGeometry configuration section must be programmatically generated
by gensphinx. Many of the parameters are interdependent and cannot be individually modified.
Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which computes the Sphinx geom-
etry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node's configuration file, as shown
below. For more information, see Appendix: Using gensphinx [https://katzenpost.network/docs/ad-
min_guide/gensphinx.html].

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because packet headers hold desti-
nation information for each hop, the size of the header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

51

https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html
https://katzenpost.network/docs/admin_guide/gensphinx.html

Components and configura-
tion of the Katzenpost mixnet

The total length of the routing information portion of the Sphinx packet header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information block that we expect
to encounter. Other packets have NextNodeHop + NodeDelay sections, or a Recipient sec-
tion, both of which are shorter.

Type: int

Required: Yes

52

Components and configura-
tion of the Katzenpost mixnet

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Service node: Debug section

The Debug section is the Katzenpost server debug configuration for advanced tuning.

[Debug]
 NumSphinxWorkers = 16
 NumServiceWorkers = 3
 NumGatewayWorkers = 3
 NumKaetzchenWorkers = 3
 SchedulerExternalMemoryQueue = false
 SchedulerQueueSize = 0
 SchedulerMaxBurst = 16
 UnwrapDelay = 250
 GatewayDelay = 500
 ServiceDelay = 500
 KaetzchenDelay = 750
 SchedulerSlack = 150
 SendSlack = 50
 DecoySlack = 15000
 ConnectTimeout = 60000
 HandshakeTimeout = 30000
 ReauthInterval = 30000
 SendDecoyTraffic = false
 DisableRateLimit = false
 GenerateOnly = false

• NumSphinxWorkers

Specifies the number of worker instances to use for inbound Sphinx packet processing.

Type: int
53

Components and configura-
tion of the Katzenpost mixnet

Required: No

• NumProviderWorkers

Specifies the number of worker instances to use for provider specific packet processing.

Type: int

Required: No

• NumKaetzchenWorkers

Specifies the number of worker instances to use for Kaetzchen-specific packet processing.

Type: int

Required: No

• SchedulerExternalMemoryQueue

If true, the experimental disk-backed external memory queue is enabled.

Type: bool

Required: No

• SchedulerQueueSize

Specifies the maximum scheduler queue size before random entries will start getting dropped. A
value less than or equal to zero is treated as unlimited.

Type: int

Required: No

• SchedulerMaxBurst

Specifies the maximum number of packets that will be dispatched per scheduler wakeup event.

Type:

Required: No

• UnwrapDelay

Specifies the maximum unwrap delay due to queueing in milliseconds.

Type: int

Required: No

• GatewayDelay

Specifies the maximum gateway node worker delay due to queueing in milliseconds.

Type: int

Required: No

• ServiceDelay

Specifies the maximum provider delay due to queueing in milliseconds.

54

Components and configura-
tion of the Katzenpost mixnet

Type: int

Required: No

• KaetzchenDelay

Specifies the maximum kaetzchen delay due to queueing in milliseconds.

Type: int

Required: No

• SchedulerSlack

Specifies the maximum scheduler slack due to queueing and/or processing in milliseconds.

Type: int

Required: No

• SendSlack

Specifies the maximum send-queue slack due to queueing and/or congestion in milliseconds.

Type: int

Required: No

• DecoySlack

Specifies the maximum decoy sweep slack due to external delays such as latency before a loop
decoy packet will be considered lost.

Type: int

Required: No

• ConnectTimeout

Specifies the maximum time a connection can take to establish a TCP/IP connection in milliseconds.

Type: int

Required: No

• HandshakeTimeout

Specifies the maximum time a connection can take for a link-protocol handshake in milliseconds.

Type: int

Required: No

• ReauthInterval

Specifies the interval at which a connection will be reauthenticated in milliseconds.

Type: int

Required: No

• SendDecoyTraffic

55

Components and configura-
tion of the Katzenpost mixnet

If true, decoy traffic is enabled. This parameter is experimental and untuned, and is disabled by
default.

Note

This option will be removed once decoy traffic is fully implemented.

Type: bool

Required: No

• DisableRateLimit

If true, the per-client rate limiter is disabled.

Note

This option should only be used for testing.

Type: bool

Required: No

• GenerateOnly

If true, the server immediately halts and cleans up after long-term key generation.

Type: bool

Required: No

56

Using the Katzenpost Docker test
network

Katzenpost provides a ready-to-deploy Docker image for developers who need a non-production test
environment for developing and testing client applications and server side plugins. By running this
image on a single computer, you avoid the need to build and manage a complex multi-node mix net.
The image can also be run using Podman [https://podman.io/]

The test mix network includes the following components:

• Three directory authority (PKI [https://katzenpost.network/docs/specs/pki/]) nodes

• Six mix [https://katzenpost.network/docs/specs/mixnet/] nodes, including one node serving also as
both gateway and service provider

• A ping utility, run-ping

Requirements
Before running the Katzenpost docker image, make sure that the following software is installed.

• A Debian GNU Linux [https://debian.org] or Ubuntu [https://ubuntu.com] system

• Git [https://git-scm.com/]

• Go [https://go.dev/]

• GNU Make [https://www.gnu.org/software/make/]

• Prometheus [https://prometheus.io/docs/introduction/overview/]

• Docker [https://www.docker.com], Docker Compose [https://docs.docker.com/compose/], and (op-
tionally) Podman [https://podman.io]

Note

If both Docker and Podman are present on your system, Katzenpost uses Podman. Podman is
a drop-in daemonless equivalent to Docker that does not require superuser privileges to run.

On Debian, these software requirements can be installed with the following commands (running as
superuser). Apt will pull in the needed dependencies.

apt update
apt install git golang make docker docker-compose podman

Preparing to run the container image
Complete the following procedure to obtain, build, and deploy the Katzenpost test network.

1. Install the Katzenpost code repository, hosted at https://github.com/katzenpost. The
main Katzenpost repository contains code for the server components as well as the docker image.
Clone the repository with the following command (your directory location may vary):

~$ git clone https://github.com/katzenpost/katzenpost.git

2. Navigate to the new katzenpost subdirectory and ensure that the code is up to date.

~$ cd katzenpost

57

https://podman.io/
https://podman.io/
https://katzenpost.network/docs/specs/pki/
https://katzenpost.network/docs/specs/pki/
https://katzenpost.network/docs/specs/mixnet/
https://katzenpost.network/docs/specs/mixnet/
https://debian.org
https://debian.org
https://ubuntu.com
https://ubuntu.com
https://git-scm.com/
https://git-scm.com/
https://go.dev/
https://go.dev/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.docker.com
https://www.docker.com
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://podman.io
https://podman.io
https://github.com/katzenpost

Using the Katzenpost
Docker test network

~/katzenpost$ git checkout main
~/katzenpost$ git pull

3. (Optional) Create a development branch and check it out.

~/katzenpost$ git checkout -b devel

4. (Optional) If you are using Podman, complete the following steps:

1. Point the DOCKER_HOST environment variable at the Podman process.

$ export DOCKER_HOST=unix:///var/run/user/$(id -u)/podman/podman.sock

2. Set up and start the Podman server (as superuser).

$ podman system service -t 0 $DOCKER_HOST &
$ systemctl --user enable --now podman.socket

Operating the test mixnet
Navigate to katzenpost/docker. The Makefile contains target operations to create, manage,
and test the self-contained Katzenpost container network. To invoke a target, run a command with the
using the following pattern:

 ~/katzenpost/docker$ make target

Running make with no target specified returns a list of available targets.

Table 1. Table 1: Makefile targets

[none] Display this list of targets.

start Run the test network in the background.

stop Stop the test network.

wait Wait for the test network to have consensus.

watch Display live log entries until Ctrl-C.

status Show test network consensus status.

show-latest-vote Show latest consensus vote.

run-ping Send a ping over the test network.

clean-bin Stop all components and delete binaries.

clean-local Stop all components, delete binaries, and delete
data.

clean-local-dryrun Show what clean-local would delete.

clean Same as clean-local, but also deletes go_deps
image.

Starting and monitoring the mixnet
The first time that you run make start, the Docker image is downloaded, built, installed, and started.
This takes several minutes. When the build is complete, the command exits while the network remains
running in the background.

~/katzenpost/docker$ make start

Subsequent runs of make start either start or restart the network without building the components
from scratch. The exception to this is when you delete any of the Katzenpost binaries (dirauth.alpine,

58

Using the Katzenpost
Docker test network

server.alpine, etc.). In that case, make start rebuilds just the parts of the network dependent on the
deleted binary. For more information about the files created during the Docker build, see the section
called “Network topology and components”.

Note

When running make start , be aware of the following considerations:

• If you intend to use Docker, you need to run make as superuser. If you are using sudo to elevate
your privileges, you need to edit katzenpost/docker/Makefile to prepend sudo to
each command contained in it.

• If you have Podman installed on your system and you nonetheless want to run Docker, you
can override the default behavior by adding the argument docker=docker to the command as
in the following:

~/katzenpost/docker$ make run docker=docker

After the make start command exits, the mixnet runs in the background, and you can run make watch
to display a live log of the network activity.

~/katzenpost/docker$ make watch
 ...
 <output>
 ...

When installation is complete, the mix servers vote and reach a consensus. You can use the wait target
to wait for the mixnet to get consensus and be ready to use. This can also take several minutes:

~/katzenpost/docker$ make wait
 ...
 <output>
 ...

You can confirm that installation and configuration are complete by issuing the status command from
the same or another terminal. When the network is ready for use, status begins returning consensus
information similar to the following:

~/katzenpost/docker$ make status
 ...
 00:15:15.003 NOTI state: Consensus made for epoch 1851128 with 3/3 signatures: &{Epoch: 1851128 GenesisEpoch: 1851118
 ...

Testing the mixnet
At this point, you should have a locally running mix network. You can test whether it is working
correctly by using run-ping, which launches a packet into the network and watches for a successful
reply. Run the following command:

~/katzenpost/docker$ make run-ping

If the network is functioning properly, the resulting output contains lines similar to the following:

19:29:53.541 INFO gateway1_client: sending loop decoy
 !19:29:54.108 INFO gateway1_client: sending loop decoy
 19:29:54.632 INFO gateway1_client: sending loop decoy
 19:29:55.160 INFO gateway1_client: sending loop decoy
 !19:29:56.071 INFO gateway1_client: sending loop decoy
 !19:29:59.173 INFO gateway1_client: sending loop decoy
 !Success rate is 100.000000 percent 10/10)

59

Using the Katzenpost
Docker test network

lf run-ping fails to receive a reply, it eventually times out with an error message. If this happens, try
the command again.

Note

If you attempt use run-ping too quickly after starting the mixnet, and consensus has not been
reached, the utility may crash with an error message or hang indefinitely. If this happens, issue (if
necessary) a Ctrl-C key sequence to abort, check the consensus status with the status command,
and then retry run-ping.

Shutting down the mixnet
The mix network continues to run in the terminal where you started it until you issue a Ctrl-C key
sequence, or until you issue the following command in another terminal:

~/katzenpost/docker$ make stop

When you stop the network, the binaries and data are left in place. This allows for a quick restart.

Uninstalling and cleaning up
Several command targets can be used to uninstall the Docker image and restore your system to a clean
state. The following examples demonstrate the commands and their output.

• clean-bin

To stop the network and delete the compiled binaries, run the following command:

~/katzenpost/docker$ make clean-bin

 [-e voting_mixnet] && cd voting_mixnet && DOCKER_HOST=unix:///run/user/1000/podman/podman.sock docker-compose down --remove-orphans; rm -fv running.stamp
 Stopping voting_mixnet_auth3_1 ... done
 Stopping voting_mixnet_servicenode1_1 ... done
 Stopping voting_mixnet_metrics_1 ... done
 Stopping voting_mixnet_mix3_1 ... done
 Stopping voting_mixnet_auth2_1 ... done
 Stopping voting_mixnet_mix2_1 ... done
 Stopping voting_mixnet_gateway1_1 ... done
 Stopping voting_mixnet_auth1_1 ... done
 Stopping voting_mixnet_mix1_1 ... done
 Removing voting_mixnet_auth3_1 ... done
 Removing voting_mixnet_servicenode1_1 ... done
 Removing voting_mixnet_metrics_1 ... done
 Removing voting_mixnet_mix3_1 ... done
 Removing voting_mixnet_auth2_1 ... done
 Removing voting_mixnet_mix2_1 ... done
 Removing voting_mixnet_gateway1_1 ... done
 Removing voting_mixnet_auth1_1 ... done
 Removing voting_mixnet_mix1_1 ... done
 removed 'running.stamp'
 rm -vf ./voting_mixnet/*.alpine
 removed './voting_mixnet/echo_server.alpine'
 removed './voting_mixnet/fetch.alpine'
 removed './voting_mixnet/memspool.alpine'
 removed './voting_mixnet/panda_server.alpine'
 removed './voting_mixnet/pigeonhole.alpine'
 removed './voting_mixnet/ping.alpine'
 removed './voting_mixnet/reunion_katzenpost_server.alpine'

60

Using the Katzenpost
Docker test network

 removed './voting_mixnet/server.alpine'
 removed './voting_mixnet/voting.alpine'

This command leaves in place the cryptographic keys, the state data, and the logs.

• clean-local-dryrun

To diplay a preview of what clean-local would remove, without actually deleting anything, run the
following command:

~/katzenpost/docker$ make clean-local-dryrun

• clean-local

To delete both compiled binaries and data, run the following command:

~/katzenpost/docker$ make clean-local

 [-e voting_mixnet] && cd voting_mixnet && DOCKER_HOST=unix:///run/user/1000/podman/podman.sock docker-compose down --remove-orphans; rm -fv running.stamp
 Removing voting_mixnet_mix2_1 ... done
 Removing voting_mixnet_auth1_1 ... done
 Removing voting_mixnet_auth2_1 ... done
 Removing voting_mixnet_gateway1_1 ... done
 Removing voting_mixnet_mix1_1 ... done
 Removing voting_mixnet_auth3_1 ... done
 Removing voting_mixnet_mix3_1 ... done
 Removing voting_mixnet_servicenode1_1 ... done
 Removing voting_mixnet_metrics_1 ... done
 removed 'running.stamp'
 rm -vf ./voting_mixnet/*.alpine
 removed './voting_mixnet/echo_server.alpine'
 removed './voting_mixnet/fetch.alpine'
 removed './voting_mixnet/memspool.alpine'
 removed './voting_mixnet/panda_server.alpine'
 removed './voting_mixnet/pigeonhole.alpine'
 removed './voting_mixnet/reunion_katzenpost_server.alpine'
 removed './voting_mixnet/server.alpine'
 removed './voting_mixnet/voting.alpine'
 git clean -f -x voting_mixnet
 Removing voting_mixnet/
 git status .
 On branch main
 Your branch is up to date with 'origin/main'.

• clean

To stop the the network and delete the binaries, the data, and the go_deps image, run the following
command as superuser:

~/katzenpost/docker$ sudo make clean

Network topology and components
The Docker image deploys a working mixnet with all components and component groups needed to
perform essential mixnet functions:

• message mixing (including packet reordering, timing randomization, injection of decoy traffic, ob-
fuscation of senders and receivers, and so on)

• service provisioning

61

Using the Katzenpost
Docker test network

• internal authentication and integrity monitoring

• interfacing with external clients

Warning

While suited for client development and testing, the test mixnet omits performance and security
redundancies. Do not use it in production.

The following diagram illustrates the components and their network interactions. The gray blocks
represent nodes, and the arrows represent information transfer.

Figure 1. Test network topology

On the left, the Client transmits a message (shown by purple arrows) through the Gateway node,
across three mix node layers, to the Service node. The Service node processes the request and re-
sponds with a reply (shown by the green arrows) that traverses the mix node layers before exiting the
mixnet via the Gateway node and arriving at the Client.

On the right, directory authorities Dirauth 1, Dirauth 2, and Dirauth 3 provide PKI services. The
directory authorities receive mix descriptors from the other nodes, collate these into a consensus

62

Using the Katzenpost
Docker test network

document containing validated network status and authentication materials , and make that available
to the other nodes.

The elements in the topology diagram map to the mixnet's component nodes as shown in the following
table. Note that all nodes share the same IP address (127.0.0.1, i.e., localhost), but are accessed through
different ports. Each node type links to additional information in Components and configuration of
the Katzenpost mixnet [https://katzenpost.network/docs/admin_guide/components.html].

Table 2. Table 2: Test mixnet hosts

Node type Docker ID Diagram label IP address TCP port

auth1 Dirauth1 30001

auth2 Dirauth 2 30002

Directory authori-
ty [https://katzen-
post.network/docs/
admin_guide/in-
tro-dirauth.html]

auth3 Dirauth 3 30003

Gateway node
[https://
katzenpost.net-
work/docs/
admin_guide/in-
tro-gateway.html]

gateway1 Gateway node 30004

Service node
[https://
katzenpost.net-
work/docs/
admin_guide/in-
tro-service.html]

servicenode1 Service node 30006

mix1 Layer 1 mix node 30008

mix2 Layer 2 mix node 30010

Mix node [https://
katzenpost.net-
work/docs/
admin_guide/in-
tro-mix.html]

mix3 Layer 3 mix node

127.0.0.1 (local-
host)

30012

The Docker file tree
The following tree [https://manpages.debian.org/bookworm/tree/tree.1.en.html] output shows the lo-
cation, relative to the katzenpost repository root, of the files created by the Docker build. During
testing and use, you would normally touch only the TOML configuration file associated with each
node, as highlighted in the listing. For help in understanding these files and a complete list of config-
uration options, follow the links in Table 2: Test mixnet hosts.

katzenpost/docker/voting_mixnet/
|---auth1
| |---authority.toml
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---link.private.pem
| |---link.public.pem
| |---persistence.db
|---auth2
| |---authority.toml
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log

63

https://katzenpost.network/docs/admin_guide/components.html
https://katzenpost.network/docs/admin_guide/components.html
https://katzenpost.network/docs/admin_guide/components.html
https://katzenpost.network/docs/admin_guide/intro-dirauth.html
https://katzenpost.network/docs/admin_guide/intro-dirauth.html
https://katzenpost.network/docs/admin_guide/intro-dirauth.html
https://katzenpost.network/docs/admin_guide/intro-dirauth.html
https://katzenpost.network/docs/admin_guide/intro-dirauth.html
https://katzenpost.network/docs/admin_guide/intro-dirauth.html
https://katzenpost.network/docs/admin_guide/intro-gateway.html
https://katzenpost.network/docs/admin_guide/intro-gateway.html
https://katzenpost.network/docs/admin_guide/intro-gateway.html
https://katzenpost.network/docs/admin_guide/intro-gateway.html
https://katzenpost.network/docs/admin_guide/intro-gateway.html
https://katzenpost.network/docs/admin_guide/intro-gateway.html
https://katzenpost.network/docs/admin_guide/intro-service.html
https://katzenpost.network/docs/admin_guide/intro-service.html
https://katzenpost.network/docs/admin_guide/intro-service.html
https://katzenpost.network/docs/admin_guide/intro-service.html
https://katzenpost.network/docs/admin_guide/intro-service.html
https://katzenpost.network/docs/admin_guide/intro-service.html
https://katzenpost.network/docs/admin_guide/intro-mix.html
https://katzenpost.network/docs/admin_guide/intro-mix.html
https://katzenpost.network/docs/admin_guide/intro-mix.html
https://katzenpost.network/docs/admin_guide/intro-mix.html
https://katzenpost.network/docs/admin_guide/intro-mix.html
https://katzenpost.network/docs/admin_guide/intro-mix.html
https://manpages.debian.org/bookworm/tree/tree.1.en.html
https://manpages.debian.org/bookworm/tree/tree.1.en.html

Using the Katzenpost
Docker test network

| |---link.private.pem
| |---link.public.pem
| |---persistence.db
|---auth3
| |---authority.toml
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---link.private.pem
| |---link.public.pem
| |---persistence.db
|---client
| |---client.toml
|---client2
| |---client.toml
|---dirauth.alpine
|---docker-compose.yml
|---echo_server.alpine
|---fetch.alpine
|---gateway1
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
| |---management_sock
| |---spool.db
| |---users.db
|---memspool.alpine
|---mix1
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
|---mix2
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
|---mix3
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
|---panda_server.alpine
|---pigeonhole.alpine
|---ping.alpine
|---prometheus.yml
|---proxy_client.alpine
|---proxy_server.alpine
|---running.stamp

64

Using the Katzenpost
Docker test network

|---server.alpine
|---servicenode1
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
| |---management_sock
| |---map.storage
| |---memspool.13.log
| |---memspool.storage
| |---panda.25.log
| |---panda.storage
| |---pigeonHole.19.log
| |---proxy.31.log
|---voting_mixnet

Examples of complete TOML configuration files are provided in Appendix: Configuration files from
the Docker test mixnet [https://katzenpost.network/docs/admin_guide/docker-config.html].

65

https://katzenpost.network/docs/admin_guide/docker-config.html
https://katzenpost.network/docs/admin_guide/docker-config.html
https://katzenpost.network/docs/admin_guide/docker-config.html

Tuning the Katzenpost mixnet
To do

66

Using Katzenpost from behind a NAT
device

To do

Katzenpost servers can be used from behind network address translation (NAT) devices. This applies
to mix nodes, gateway nodes, service nodes, and directory authority nodes (dirauths). Port forwarding
and other network configuration details depend on how you are hosting your servers and the type of
router you use.

Some hosting scenarios, such as the use of an AWS EC2 instance, require no manual port forwarding.
A Katzenpost node running on an EC2 instance with default network settings listens on its internal IP
address yet can receive connections from publicly routed IP addresses. For home and small business
routers, default policy is to block inbound connections from public addresses. In this scenario, you
need to configure port forwarding to the appropriate internal IP address and port.

Table 1. Lan hosting options

Mix node Gateway node Service node Dirauth

Transparent port
forwarding (EC2,
etc.)

Selective forward-
ing (home and
small business
routers)

Tor

Using Tor

Dirauth is a cooperative crash fault tolerant voting system composed of multiple dirauth nodes. How-
ever, each of these dirauth nodes must have knowledge of the other dirauth node's network connection
information and public cryptographic key material. It's often convenient enough for dirauth operators
to use a private git repo to coordinate changes to the dirauth configurations and public key materials.
Therefore, dirauth operators wishing to operate a node behind a NAT device can configure their node
to listen on a RFC1918 address such as 192.168.1.22 and yet tell the other dirauth node operators that
their publicly routable address is some other IP address or perhaps a Tor Onion address.

Dirauths and gateways can be hosted as Tor onion services. (Mix and service nodes cannot be hosted
in this manner because they communicate only inside the mix network.)

Any mix node type can operate behind a NAT device by using the BindAddresses parameter.
When BindAddresses is set, a node listens at one address while advertising a different address
as configured by the Addresses parameter, which specifies the address that the node shares with
other nodes through the PKI document.

If you are configuring a Gateway node to listen on a Tor onion service, then you must make sure that
the BindAddresses match the listening address and port in your "torrc" file:

67

Using Katzenpost from
behind a NAT device

HiddenServiceDir /var/lib/tor/my_website/
HiddenServicePort 1234 127.0.0.1:1234

We refer you to the Tor onion setup docs for more information: https://community.torprojec-
t.org/onion-services/setup/

The corresponding Gateway config Server section might look like this:

[Server]
Identifier = "gnunet"
PKISignatureScheme = "Ed25519 Sphincs+"
WireKEM = "KYBER768-X25519"
Addresses = ["onion://your-onion-address.onion:1234"]
BindAddresses = ["tcp://127.0.0.1:1234",]
DataDir = "/var/lib/pq-katzenpost-mixserver"
IsGatewayNode = true
IsServiceNode = false
...

DIAGRAM: ROUTER, IPs, etc.

mix node, device NAT device/router; Nat dev has an Internet route. Internall, mix node binds to an
internal addrexs (show configuration). This is the same for Tor, but with Onion addess rahter that a
static IP (see Tor and link)

NATPMP STUN TURN– these are Nat PENETRATION PROTOCLDS... NOT SUPPORTED

Two diagrams...Onion and IPv4/IPv6

This confguration only allows for the Gateway nodes (which are also mix nodes).

We need a to show an excerpt from a torrc to show where the onion listening port is confuigred.

Using BindAddresses with Addresses
In a conventional NAT configuration, a router sits between two IP networks, one with public, globally
unique addresses and the other (the LAN) with reusable local addresses. A host with a public address
can connect to a host with a local address because the router is configured with a mapping between
the two networks. The router rewrites the destination and source headers of the packets that traverse
it in both directions, creating the illusion of an unmediated end-to-end connection. The public host
sends packs to a public address

68

Appendix: Configuration files from
the Docker test mixnet

As an aid to adminstrators implementing a Katzenpost mixnet, this appendix provides lightly edited
examples of configuration files for each Katzenpost node type. These files are drawn from a built
instance of the Docker test mixnet. These code listings are meant to be used as a reference alongside
the detailed configuration documentation in Components and configuration of the Katzenpost mixnet
[https://katzenpost.network/docs/admin_guide/components.html]. You cannot use these listings as a
drop-in solution in your own mixnets for reasons explained in the Network topology and components
[https://katzenpost.network/docs/admin_guide/topology.html] section of the Docker test mixnet doc-
umentation.

Directory authority
Source: ../katzenpost/docker/voting_mixnet/auth1/authority.toml

[Server]
 Identifier = "auth1"
 WireKEMScheme = "xwing"
 PKISignatureScheme = "Ed448-Dilithium3"
 Addresses = ["tcp://127.0.0.1:30001"]
 DataDir = "/voting_mixnet/auth1"

[[Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30001"]

[[Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30002"]

[[Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nJzkFpS035de1PmA2MM [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30003"]

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

[Parameters]
 SendRatePerMinute = 0
 Mu = 0.005

69

https://katzenpost.network/docs/admin_guide/components.html
https://katzenpost.network/docs/admin_guide/components.html
https://katzenpost.network/docs/admin_guide/topology.html
https://katzenpost.network/docs/admin_guide/topology.html

Appendix: Configuration files
from the Docker test mixnet

 MuMaxDelay = 1000
 LambdaP = 0.001
 LambdaPMaxDelay = 1000
 LambdaL = 0.0005
 LambdaLMaxDelay = 1000
 LambdaD = 0.0005
 LambdaDMaxDelay = 3000
 LambdaM = 0.0005
 LambdaG = 0.0
 LambdaMMaxDelay = 100
 LambdaGMaxDelay = 100

[Debug]
 Layers = 3
 MinNodesPerLayer = 1
 GenerateOnly = false

[[Mixes]]
 Identifier = "mix1"
 IdentityPublicKeyPem = "../mix1/identity.public.pem"

[[Mixes]]
 Identifier = "mix2"
 IdentityPublicKeyPem = "../mix2/identity.public.pem"

[[Mixes]]
 Identifier = "mix3"
 IdentityPublicKeyPem = "../mix3/identity.public.pem"

[[GatewayNodes]]
 Identifier = "gateway1"
 IdentityPublicKeyPem = "../gateway1/identity.public.pem"

[[ServiceNodes]]
 Identifier = "servicenode1"
 IdentityPublicKeyPem = "../servicenode1/identity.public.pem"

[Topology]

 [[Topology.Layers]]

 [[Topology.Layers.Nodes]]
 Identifier = "mix1"
 IdentityPublicKeyPem = "../mix1/identity.public.pem"

 [[Topology.Layers]]

 [[Topology.Layers.Nodes]]
 Identifier = "mix2"
 IdentityPublicKeyPem = "../mix2/identity.public.pem"

 [[Topology.Layers]]

 [[Topology.Layers.Nodes]]
 Identifier = "mix3"
 IdentityPublicKeyPem = "../mix3/identity.public.pem"

[SphinxGeometry]

70

Appendix: Configuration files
from the Docker test mixnet

 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

Mix node
Source: ../katzenpost/docker/voting_mixnet/mix1/katzenpost.toml

[Server]
 Identifier = "mix1"
 WireKEM = "xwing"
 PKISignatureScheme = "Ed448-Dilithium3"
 Addresses = ["tcp://127.0.0.1:30010", "quic://[::1]:30011"]
 MetricsAddress = "127.0.0.1:30012"
 DataDir = "/voting_mixnet/mix1"
 IsGatewayNode = false
 IsServiceNode = false

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

[PKI]
 [PKI.Voting]

 [[PKI.Voting.Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30001"]

 [[PKI.Voting.Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30002"]

 [[PKI.Voting.Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nJzkFpS035de1PmA2M [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----END XWING PUBLIC KEY-----\n"

71

Appendix: Configuration files
from the Docker test mixnet

 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30003"]

[Management]
 Enable = false
 Path = "/voting_mixnet/mix1/management_sock"

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

[Debug]
 NumSphinxWorkers = 16
 NumServiceWorkers = 3
 NumGatewayWorkers = 3
 NumKaetzchenWorkers = 3
 SchedulerExternalMemoryQueue = false
 SchedulerQueueSize = 0
 SchedulerMaxBurst = 16
 UnwrapDelay = 250
 GatewayDelay = 500
 ServiceDelay = 500
 KaetzchenDelay = 750
 SchedulerSlack = 150
 SendSlack = 50
 DecoySlack = 15000
 ConnectTimeout = 60000
 HandshakeTimeout = 30000
 ReauthInterval = 30000
 SendDecoyTraffic = false
 DisableRateLimit = false
 GenerateOnly = false

Gateway node
Source: ../katzenpost/docker/voting_mixnet/gateway1/katzenpost.toml

[Server]
 Identifier = "gateway1"
 WireKEM = "xwing"
 PKISignatureScheme = "Ed448-Dilithium3"
 Addresses = ["tcp://127.0.0.1:30004", "quic://[::1]:30005", "onion://thisisjustatestoniontoverifythatconfigandpkiworkproperly.onion:4242"]
 BindAddresses = ["tcp://127.0.0.1:30004", "quic://[::1]:30005"]
 MetricsAddress = "127.0.0.1:30006"
 DataDir = "/voting_mixnet/gateway1"
 IsGatewayNode = true

72

Appendix: Configuration files
from the Docker test mixnet

 IsServiceNode = false

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

[Gateway]
 [Gateway.UserDB]
 Backend = "bolt"
 [Gateway.UserDB.Bolt]
 UserDB = "/voting_mixnet/gateway1/users.db"
 [Gateway.SpoolDB]
 Backend = "bolt"
 [Gateway.SpoolDB.Bolt]
 SpoolDB = "/voting_mixnet/gateway1/spool.db"

[PKI]
 [PKI.Voting]

 [[PKI.Voting.Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30001"]

 [[PKI.Voting.Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30002"]

 [[PKI.Voting.Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nJzkFpS035de1PmA2MM [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30003"]

[Management]
 Enable = true
 Path = "/voting_mixnet/gateway1/management_sock"

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574

73

Appendix: Configuration files
from the Docker test mixnet

 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

[Debug]
 NumSphinxWorkers = 16
 NumServiceWorkers = 3
 NumGatewayWorkers = 3
 NumKaetzchenWorkers = 3
 SchedulerExternalMemoryQueue = false
 SchedulerQueueSize = 0
 SchedulerMaxBurst = 16
 UnwrapDelay = 250
 GatewayDelay = 500
 ServiceDelay = 500
 KaetzchenDelay = 750
 SchedulerSlack = 150
 SendSlack = 50
 DecoySlack = 15000
 ConnectTimeout = 60000
 HandshakeTimeout = 30000
 ReauthInterval = 30000
 SendDecoyTraffic = false
 DisableRateLimit = false
 GenerateOnly = false

Service node
Source: ../katzenpost/docker/voting_mixnet/servicenode1/katzen-
post.toml

[Server]
 Identifier = "servicenode1"
 WireKEM = "xwing"
 PKISignatureScheme = "Ed448-Dilithium3"
 Addresses = ["tcp://127.0.0.1:30007", "quic://[::1]:30008"]
 MetricsAddress = "127.0.0.1:30009"
 DataDir = "/voting_mixnet/servicenode1"
 IsGatewayNode = false
 IsServiceNode = true

[Logging]
 Disable = false
 File = "katzenpost.log"
 Level = "INFO"

[ServiceNode]

 [[ServiceNode.Kaetzchen]]
 Capability = "echo"
 Endpoint = "+echo"
 Disable = false

 [[ServiceNode.Kaetzchen]]
 Capability = "testdest"
 Endpoint = "+testdest"

74

Appendix: Configuration files
from the Docker test mixnet

 Disable = false

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "spool"
 Endpoint = "+spool"
 Command = "/voting_mixnet/memspool.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 data_store = "/voting_mixnet/servicenode1/memspool.storage"
 log_dir = "/voting_mixnet/servicenode1"

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "pigeonhole"
 Endpoint = "+pigeonhole"
 Command = "/voting_mixnet/pigeonhole.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 db = "/voting_mixnet/servicenode1/map.storage"
 log_dir = "/voting_mixnet/servicenode1"

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "panda"
 Endpoint = "+panda"
 Command = "/voting_mixnet/panda_server.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 fileStore = "/voting_mixnet/servicenode1/panda.storage"
 log_dir = "/voting_mixnet/servicenode1"
 log_level = "INFO"

 [[ServiceNode.CBORPluginKaetzchen]]
 Capability = "http"
 Endpoint = "+http"
 Command = "/voting_mixnet/proxy_server.alpine"
 MaxConcurrency = 1
 Disable = false
 [ServiceNode.CBORPluginKaetzchen.Config]
 host = "localhost:4242"
 log_dir = "/voting_mixnet/servicenode1"
 log_level = "DEBUG"

[PKI]
 [PKI.Voting]

 [[PKI.Voting.Authorities]]
 Identifier = "auth1"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30001"]

 [[PKI.Voting.Authorities]]
 Identifier = "auth2"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"

75

Appendix: Configuration files
from the Docker test mixnet

 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30002"]

 [[PKI.Voting.Authorities]]
 Identifier = "auth3"
 IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----\nJzkFpS035de1PmA2MM [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-DILITHIUM3 PUBLIC KEY-----\n"
 PKISignatureScheme = "Ed448-Dilithium3"
 LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----END XWING PUBLIC KEY-----\n"
 WireKEMScheme = "xwing"
 Addresses = ["tcp://127.0.0.1:30003"]

[Management]
 Enable = true
 Path = "/voting_mixnet/servicenode1/management_sock"

[SphinxGeometry]
 PacketLength = 3082
 NrHops = 5
 HeaderLength = 476
 RoutingInfoLength = 410
 PerHopRoutingInfoLength = 82
 SURBLength = 572
 SphinxPlaintextHeaderLength = 2
 PayloadTagLength = 32
 ForwardPayloadLength = 2574
 UserForwardPayloadLength = 2000
 NextNodeHopLength = 65
 SPRPKeyMaterialLength = 64
 NIKEName = "x25519"
 KEMName = ""

[Debug]
 NumSphinxWorkers = 16
 NumServiceWorkers = 3
 NumGatewayWorkers = 3
 NumKaetzchenWorkers = 4
 SchedulerExternalMemoryQueue = false
 SchedulerQueueSize = 0
 SchedulerMaxBurst = 16
 UnwrapDelay = 250
 GatewayDelay = 500
 ServiceDelay = 500
 KaetzchenDelay = 750
 SchedulerSlack = 150
 SendSlack = 50
 DecoySlack = 15000
 ConnectTimeout = 60000
 HandshakeTimeout = 30000
 ReauthInterval = 30000
 SendDecoyTraffic = false
 DisableRateLimit = false
 GenerateOnly = false

76

Operating the Katzenpost mixnet
To do

CLI usage for directory authorities
To do

CLI usage for servers
To do

77

Appendix: Using gensphinx
To Do

78

	Katzenpost administration guide
	Table of Contents
	Introducing Katzenpost, a modern mixnet
	Quickstart guide
	Components and configuration of the Katzenpost mixnet
	Understanding the Katzenpost components
	Directory authorities (dirauths)
	Mix nodes
	Gateway nodes
	Service nodes
	Clients

	Configuring Katzenpost
	Configuring directory authorities
	Dirauth: Server section
	Dirauth: Authorities section
	Dirauth: Logging section
	Dirauth: Parameters section
	Dirauth: Debug section
	Dirauth: Mixes sections
	Dirauth: GatewayNodes section
	Dirauth: ServiceNodes sections
	Dirauth: Topology section
	Dirauth: SphinxGeometry section

	Configuring mix nodes
	Mix node: Server section
	Mix node: Logging section
	Mix node: PKI section
	Mix node: Management section
	Mix node: SphinxGeometry section
	Mix node: Debug section

	Configuring gateway nodes
	Gateway node: Server section
	Gateway node: Logging section
	Gateway node: Gateway section
	Gateway node: PKI section
	Gateway node: Management section
	Gateway node: SphinxGeometry section
	Gateway node: Debug section

	Configuring service nodes
	Service node: Server section
	Service node: Logging section
	Service node: ServiceNode section
	Service node: PKI section
	Service node: Management section
	Service node: SphinxGeometry section
	Service node: Debug section

	Using the Katzenpost Docker test network
	Requirements
	Preparing to run the container image
	Operating the test mixnet
	Starting and monitoring the mixnet
	Testing the mixnet
	Shutting down the mixnet
	Uninstalling and cleaning up

	Network topology and components
	The Docker file tree

	

	Tuning the Katzenpost mixnet
	Using Katzenpost from behind a NAT device
	Using Tor
	Using BindAddresses with Addresses

	Appendix: Configuration files from the Docker test mixnet
	Directory authority
	Mix node
	Gateway node
	Service node

	Operating the Katzenpost mixnet
	CLI usage for directory authorities
	CLI usage for servers

	Appendix: Using gensphinx

