
Katzenpost administration guide

Contents
Introduction 3

Components and configuration of the Katzenpost mixnet 3
Understanding the Katzenpost components 3

Directory authorities (dirauths) 5
Mix nodes . 5
Gateway nodes . 5
Service nodes . 5
Clients . 6

Configuring Katzenpost . 7
Configuring directory authorities 7

Dirauth: Server section 7
Dirauth: Authorities section 9
Dirauth: Logging section 11

. 11
Dirauth: Parameters section 12
Dirauth: Debug section 14
Dirauth: Mixes sections 15
Dirauth: GatewayNodes section 16
Dirauth: ServiceNodes sections 16
Dirauth: Topology section 16
Dirauth: SphinxGeometry section 17

. 18
Configuring mix nodes . 21

Mix node: Server section 21
. 21

Mix node: Logging section 23
. 24

Mix node: PKI section . 24
. 24

Mix node: Management section 27
. 27

Mix node: SphinxGeometry section 27

1

. 27
Mix node: Debug section 30

. 30
Configuring gateway nodes . 34

Gateway node: Server section 34
. 34

Gateway node: Logging section 36
. 37

Gateway node: Gateway section 37
Gateway node: PKI section 38

. 38
Gateway node: Management section 40

. 40
Gateway node: SphinxGeometry section 41

. 41
Gateway node: Debug section 43

. 44
Configuring service nodes . 47

Service node: Server section 47
. 48

Service node: Logging section 50
. 50

Service node: ServiceNode section 51
Service node: PKI section 55

. 55
Service node: Management section 58

. 58
Service node: SphinxGeometry section 58

. 58
Service node: Debug section 61

. 61

Using the Katzenpost Docker test network 64
Requirements . 65
Preparing to run the container image 65
Operating the test mixnet . 66

Starting and monitoring the mixnet 66
Testing the mixnet . 68
Shutting down the mixnet . 68
Uninstalling and cleaning up . 68

Network topology and components . 70
The Docker file tree . 72

. 72

Appendix: Configuration files from the Docker test mixnet 74
Directory authority . 75

2

Mix node . 77
Gateway node . 79
Service node . 82

Introduction
To Do

Components and configuration of the Katzenpost
mixnet
This section of the Katzenpost technical documentation provides an introduction
to the software components that make up Katzenpost and guidance on how to
configure each component. The intended reader is a system administrator who
wants to implement a working, production Katzenpost network.

For information about the theory and design of this software, see Introduction.
For a quickly deployable, non-production test network (primarily for use by
developers), see Configuring Katzenpost.

Understanding the Katzenpost components
The core of Katzenpost consists of two program executables, dirauth and server.
Running the dirauthcommmand runs a directory authority node, or dirauth,
that functions as part of the mixnet’s public-key infrastructure (PKI). Running
the server runs either a mix node, a gateway node, or a service node, depending
on the configuration. Configuration settings are provided in an associated
katzenpost-authority.toml or katzenpost.toml file respectively.

In addition to the server components, Katzenpost also supports connections to
client applications hosted externally to the mix network and communicating
with it through gateway nodes.

A model mix network is shown in Figure 1.

The mix network contains an n-layer topology of mix-nodes, with three nodes
per layer in this example. Sphinx packets traverse the network in one direction
only. The gateway nodes allow clients to interact with the mix network. The
service nodes provide mix network services that mix network clients can interact
with. All messages sent by clients are handed to a connector daemon hosted on
the client system, passed across the Internet to a gateway, and then relayed to a
service node by way of the nine mix nodes. The service node sends its reply back
across the mix-node layers to a gateway, which transmits it across the Internet
to be received by the targeted client. The mix, gateway, and service nodes send
mix descriptors to the dirauths and retrieve a consensus document from them,
described below.

3

Figure 1: The pictured element types correspond to discrete client and server
programs that Katzenpost requires to function.

4

In addition to the server components, Katzenpost supports connections to client
applications hosted externally to the mix network and communicating with it
through gateway nodes and, in some cases, a client connector.

Directory authorities (dirauths)

Dirauths compose the decentralized public key infrastructure (PKI) that serves
as the root of security for the entire mix network. Clients, mix nodes, gateways
nodes, and service nodes rely on the PKI/dirauth system to maintain and sign
an up-to-date consensus document, providing a view of the network including
connection information and public cryptographic key materials and signatures.

Every 20 minutes (the current value for an epoch), each mix, gateway, and service
node signs a mix descriptor and uploads it to the dirauths. The dirauths then
vote on a new consensus document. If consensus is reached, each dirauth signs
the document. Clients and nodes download the document as needed and verify
the signatures. Consensus fails when 1/2 + 1 nodes fail, which yields greater
fault tolerance than, for example, Byzantine Fault Tolerance, which fails when
1/3 + 1 of the nodes fail.

The PKI signature scheme is fully configurable by the dirauths. Our recommen-
dation is to use a hybrid signature scheme consisting of classical Ed25519 and
the post-quantum, stateless, hash-based signature scheme known as Sphincs+
(with the parameters: ”sphincs-shake-256f”), which is designated in Katzenpost
configurations as ”Ed25519 Sphincs+”. Examples are provided below.

Mix nodes

The mix node is the fundamental building block of the mix network.

Katzenpost mix nodes are arranged in a layered topology to achieve the best
levels of anonymity and ease of analysis while being flexible enough to scale with
traffic demands.

Gateway nodes

Gateway nodes provide external client access to the mix network. Because
gateways are uniquely positioned to identify clients, they are designed to have
as little information about client behavior as possible. Gateways are randomly
selected and have no persistent relationship with clients and no knowledge of
whether a client’s packets are decoys or not. When client traffic through a
gateway is slow, the node additionally generates decoy traffic.

Service nodes

Service nodes provide functionality requested by clients. They are logically
positioned at the deepest point of the mix network, with incoming queries and
outgoing replies both needing to traverse all n layers of mix nodes. A service

5

node’s functionality may involve storing messages, publishing information outside
of the mixnet, interfacing with a blockchain node, and so on. Service nodes also
process decoy packets.

Clients

Client applications should be designed so that the following conditions are met:

• Separate service requests from a client are unlinkable. Repeating the same
request may be lead to linkability.

• Service nodes and clients have no persistent relationship.

• Cleints generate a stream of packets addressed to random or pseudorandom
services regardless of whether a real service request is being made. Most
of these packets will be decoy traffic.

• Traffic from a client to a service node must be correctly coupled with decoy
traffic. This can mean that the service node is chosen independently from
traffic history, or that the transmitted packet replaces a decoy packet that
was meant to go to the desired service.

Katzenpost currently includes several client applications. All applications make
extensive use of Sphinx single-use reply blocks (SURBs), which enable service
nodes to send replies without knowing the location of the client. Newer clients
require a connection through the client connector, which provides multiplexing
and privilege separation with a consequent reduction in processing overhead.
These clients also implement the Pigeonhole storage and BACAP protocols
detailed in Place-holder for research paper link.

The following client applications are available.

Table 1: Katzenpost clients

Name Needs connector Description Code
Ping no The mix network

equivalent of an
ICMP ping
utility, used for
network testing.

GitHub: ping

Katzen no A text chat client
with file-transfer
support.

GitHub: katzen

Status yes An HTML page
containing status
information
about the mix
network.

GitHub: status

6

https://github.com/katzenpost/katzenpost/tree/main/ping
https://github.com/katzenpost/katzen
https://github.com/katzenpost/status

Name Needs connector Description Code
Worldmap yes An HTML page

with a world map
showing
geographic
locations of mix
network nodes.

GitHub:
worldmap

Configuring Katzenpost
This section documents the configuration parameters for each type of Katzenpost
server node. Each node has its own configuration file in TOML format.

Configuring directory authorities

The following configuration is drawn from the reference implementation in
katzenpost/docker/dirauth_mixnet/auth1/authority.toml. In a real-
world mixnet, the component hosts would not be sharing a single IP address.
For more information about the test mixnet, see Using the Katzenpost
Docker test network.

Table 2: Directory authority (dirauth) configuration sections

Dirauth: Server section
Dirauth: section
Dirauth: Logging section
Dirauth: Parameters section
Dirauth: Debug section
Dirauth: Mixes sections
Dirauth: GatewayNodes section
Dirauth: ServiceNodes sections
Dirauth: Topology section
Dirauth: SphinxGeometry section

Dirauth: Server section The Server section configures mandatory basic
parameters for each directory authority.

[Server]
Identifier = "auth1"
WireKEMScheme = "xwing"
PKISignatureScheme = "Ed25519 Sphincs+"
Addresses = ["tcp://127.0.0.1:30001"]
DataDir = "/dirauth_mixnet/auth1"

7

https://github.com/katzenpost/worldmap
https://toml.io/en/v1.0.0

• Identifier

Specifies the human-readable identifier for a node, and must be unique per
mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEMScheme

Specifies the key encapsulation mechanism (KEM) scheme for the PQ
Noise-based wire protocol (link layer) that nodes use to communicate with
each other. PQ Noise is a post-quantum variation of the Noise protocol
framework, which algebraically transforms ECDH handshake patterns into
KEM encapsulate/decapsulate operations.

This configuration option supports the optional use of hybrid post-quantum
cryptography to strengthen security. The following KEM schemes are
supported:

– Classical: ”x25519”, ”x448”

X25519 and X448 are actually non-interactive key-exchanges (NIKEs),
not KEMs. Katzenpost uses a hashed ElGamal cryptographic con-
struction to convert them from NIKEs to KEMs.

– Post-quantum: ”mlkem768”,”sntrup4591761”, ”frodo640shake”,
”mceliece348864”, ”mceliece348864f”, ”mceliece460896”, ”mceliece460896f”,
”mceliece6688128”, ”mceliece6688128f”, ”mceliece6960119”,
”mceliece6960119f”, ”mceliece8192128”, ”mceliece8192128f”,
”CTIDH511”, ”CTIDH512”, ”CTIDH1024”, ”CTIDH2048”,

– Hybrid post-quantum: ”xwing”, ”Kyber768-X25519”,
”MLKEM768-X25519”, ”MLKEM768-X448”, ”FrodoKEM-
640-SHAKE-X448”, ”sntrup4591761-X448”, ”mceliece348864-
X25519”, ”mceliece348864f-X25519”, ”mceliece460896-X25519”,
”mceliece460896f-X25519”, ”mceliece6688128-X25519”, ”mceliece6688128f-
X25519”, ”mceliece6960119-X25519”, ”mceliece6960119f-X25519”,
”mceliece8192128-X25519”, ”mceliece8192128f-X25519”, ”CTIDH512-
X25519”, ”CTIDH512-X25519”

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme which will be used by all
components of the mix network when interacting with the PKI system.
Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

8

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/

The following signature schemes are supported: ”ed25519”, ”ed448”,
”Ed25519 Sphincs+”, ”Ed448-Sphincs+”, ”Ed25519-Dilithium2”, ”Ed448-
Dilithium3”

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the
transport protocol, IP address, and port number that the node will bind
to for incoming connections. Katzenpost supports URLs with that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

• DataDir

Specifies the absolute path to a node’s state directory. This is
wherepersistence.db is written to disk and where a node stores its
cryptographic key materials when started with the ”-g” command-line
option.

Type: string

Required: Yes

Dirauth: Authorities section An Authorities section is configured for
each peer authority. We recommend using TOML’s style for multi-line quotations
for key materials.

[[Authorities]]
Identifier = "auth1"
IdentityPublicKey = """

-----BEGIN ED25519 PUBLIC KEY-----
dYpXpbozjFfqhR45ZC2q97SOOsXMANdHaEdXrP42CJk=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """

-----BEGIN XWING PUBLIC KEY-----
ooQBPYNdmfwnxXmvnljPA2mG5gWgurfHhbY87DMRY2tbMeZpinJ5BlSiIecprnmm
QqxcS9o36IS62SVMlOUkw+XEZGVvc9wJqHpgEgVJRAs1PCR8cUAdM6QIYLWt/lkf
SPKDCtZ3GiSIOzMuaglo2tarIPEv1AY7r9B0xXOgSKMkGyBkCfw1VBZf46MM26NL
...
gHtNyQJnXski52O03JpZRIhR40pFOhAAcMMAZDpMTVoxlcdR6WA4SlBiSceeJBgY
Yp9PlGhCimx9am99TrdLoLCdTHB6oowt8tss3POpIOxaSlguyeym/sBhkUrnXOgN

9

https://quickref.me/toml.html

ldMtDsvvc9KUfE4I0+c+XQ==
-----END XWING PUBLIC KEY-----

"""
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30001"]

• Identifier

Specifies the human-readable identifier for the node which must be unique
per mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

String containing the node’s public identity key in PEM format.
IdentityPublicKey is the node’s permanent identifier and is used to
verify cryptographic signatures produced by its private identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme used by all directory authority
nodes. PKISignatureScheme must match the scheme specified in the
Server section of the configuration.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer’s public link-layer key in PEM format.
LinkPublicKey must match the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

Specifies the key encapsulation mechanism (KEM) scheme for the PQ
Noise-based wire protocol (link layer) that nodes use to communicate with
each other. PQ Noise is a post-quantum variation of the Noise protocol
framework, which algebraically transforms ECDH handshake patterns into
KEM encapsulate/decapsulate operations.

This configuration option supports the optional use of hybrid post-quantum
cryptography to strengthen security. The following KEM schemes are
supported:

10

https://eprint.iacr.org/2022/539
https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/

– Classical: ”x25519”, ”x448”

X25519 and X448 are actually non-interactive key-exchanges (NIKEs),
not KEMs. Katzenpost uses a hashed ElGamal cryptographic con-
struction to convert them from NIKEs to KEMs.

– Post-quantum: ”mlkem768”,”sntrup4591761”, ”frodo640shake”,
”mceliece348864”, ”mceliece348864f”, ”mceliece460896”, ”mceliece460896f”,
”mceliece6688128”, ”mceliece6688128f”, ”mceliece6960119”,
”mceliece6960119f”, ”mceliece8192128”, ”mceliece8192128f”,
”CTIDH511”, ”CTIDH512”, ”CTIDH1024”, ”CTIDH2048”,

– Hybrid post-quantum: ”xwing”, ”Kyber768-X25519”,
”MLKEM768-X25519”, ”MLKEM768-X448”, ”FrodoKEM-
640-SHAKE-X448”, ”sntrup4591761-X448”, ”mceliece348864-
X25519”, ”mceliece348864f-X25519”, ”mceliece460896-X25519”,
”mceliece460896f-X25519”, ”mceliece6688128-X25519”, ”mceliece6688128f-
X25519”, ”mceliece6960119-X25519”, ”mceliece6960119f-X25519”,
”mceliece8192128-X25519”, ”mceliece8192128f-X25519”, ”CTIDH512-
X25519”, ”CTIDH512-X25519”

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the
transport protocol, IP address, and port number that the node will bind
to for incoming connections. Katzenpost supports URLs with that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

Dirauth: Logging section

The Logging configuration section controls logging behavior across Katzen-
post.

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

11

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative
to the DataDir specified in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO
| DEBUG.

Type: string

Required: No

The DEBUG log level is unsafe for production use.

Dirauth: Parameters section The Parameters section contains the network
parameters.

[Parameters]
SendRatePerMinute = 0
Mu = 0.005
MuMaxDelay = 1000
LambdaP = 0.001
LambdaPMaxDelay = 1000
LambdaL = 0.0005
LambdaLMaxDelay = 1000
LambdaD = 0.0005
LambdaDMaxDelay = 3000
LambdaM = 0.0005
LambdaG = 0.0
LambdaMMaxDelay = 100
LambdaGMaxDelay = 100

• SendRatePerMinute

Specifies the maximum allowed rate of packets per client per gateway node.
Rate limiting is done on the gateway nodes.

Type: uint64

Required: Yes

• Mu

12

Specifies the inverse of the mean of the exponential distribution from which
the Sphinx packet per-hop mixing delay will be sampled.

Type: float64

Required: Yes

• MuMaxDelay

Specifies the maximum Sphinx packet per-hop mixing delay in milliseconds.

Type: uint64

Required: Yes

• LambdaP

Specifies the inverse of the mean of the exponential distribution that clients
sample to determine the time interval between sending messages, whether
actual messages from the FIFO egress queue or decoy messages if the queue
is empty.

Type: float64

Required: Yes

• LambdaPMaxDelay

Specifies the maximum send delay interval for LambdaP in milliseconds.

Type: uint64

Required: Yes

• LambdaL

Specifies the inverse of the mean of the exponential distribution that clients
sample to determine the delay interval between loop decoys.

Type: float64

Required: Yes

• LambdaLMaxDelay

Specifies the maximum send delay interval for LambdaL in milliseconds.

Type: uint64

Required: Yes

• LambdaD

LambdaD is the inverse of the mean of the exponential distribution that
clients sample to determine the delay interval between decoy drop messages.

Type: float64

Required: Yes

13

• LambdaDMaxDelay

Specifies the maximum send interval in for LambdaD in milliseconds.

Type: uint64

Required: Yes

• LambdaM

LambdaM is the inverse of the mean of the exponential distribution that
mix nodes sample to determine the delay between mix loop decoys.

Type: float64

Required: Yes

• LambdaG

LambdaG is the inverse of the mean of the exponential distribution that
gateway nodes to select the delay between gateway node decoys.

Do not set this value manually in the TOML configuration file. The field
is used internally by the dirauth server state machine.

Type: float64

Required: Yes

• LambdaMMaxDelay

Specifies the maximum delay for LambdaM in milliseconds.

Type: uint64

Required: Yes

• LambdaGMaxDelay

Specifies the maximum delay for LambdaG in milliseconds.

Type: uint64

Required: Yes

Dirauth: Debug section

[Debug]
Layers = 3
MinNodesPerLayer = 1
GenerateOnly = false

• Layers

Specifies the number of non-service-provider layers in the network topology.

Type: int

14

Required: Yes

• MinNodesrPerLayer

Specifies the minimum number of nodes per layer required to form a valid
consensus document.

Type: int

Required: Yes

• GenerateOnly

If true, the server halts and cleans up the data directory immediately after
long-term key generation.

Type: bool

Required: No

Dirauth: Mixes sections The Mixes configuration sections list mix nodes
that are known to the authority.

[[Mixes]]
Identifier = "mix1"
IdentityPublicKeyPem = "../mix1/identity.public.pem"

[[Mixes]]
Identifier = "mix2"
IdentityPublicKeyPem = "../mix2/identity.public.pem"

[[Mixes]]
Identifier = "mix3"
IdentityPublicKeyPem = "../mix3/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a mix node, and must be unique
per mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKeyPem

Path and file name of a mix node’s public identity signing key, also known
as the identity key, in PEM format.

Type: string

Required: Yes

15

Dirauth: GatewayNodes section The GatewayNodes sections list gateway
nodes that are known to the authority.

[[GatewayNodes]]
Identifier = "gateway1"
IdentityPublicKeyPem = "../gateway1/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a gateway node, and must be
unique per mixnet. Identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKeyPem

Path and file name of a gateway node’s public identity signing key, also
known as the identity key, in PEM format.

Type: string

Required: Yes

Dirauth: ServiceNodes sections The ServiceNodes sections list service
nodes that are known to the authority.

[[ServiceNodes]]
Identifier = "servicenode1"
IdentityPublicKeyPem = "../servicenode1/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a service node, and must be
unique per mixnet. Identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKeyPem

Path and file name of a service node’s public identity signing key, also
known as the identity key, in PEM format.

Type: string

Required: Yes

Dirauth: Topology section The Topology section defines the layers of the
mix network and the mix nodes in each layer.

16

[Topology]

[[Topology.Layers]]

[[Topology.Layers.Nodes]]
Identifier = "mix1"
IdentityPublicKeyPem = "../mix1/identity.public.pem"

[[Topology.Layers]]

[[Topology.Layers.Nodes]]
Identifier = "mix2"
IdentityPublicKeyPem = "../mix2/identity.public.pem"

[[Topology.Layers]]

[[Topology.Layers.Nodes]]
Identifier = "mix3"
IdentityPublicKeyPem = "../mix3/identity.public.pem"

• Identifier

Specifies the human-readable identifier for a node, and must be unique per
mixnet. The identifier can be an FQDN but does not have to be.

Type: string

• IdentityPublicKeyPem

Path and file name of a mix node’s public identity signing key, also known
as the identity key, in PEM format.

Type: string

Required: Yes

Dirauth: SphinxGeometry section Sphinx is an encrypted nested-packet
format designed primarily for mixnets. The original Sphinx paper described
a non-interactive key exchange (NIKE) employing classical encryption. The
Katzenpost implementation strongly emphasizes configurability, supporting key
encapsulation mechanisms (KEMs) as well as NIKEs, and enabling the use of
either classical or hybrid post-quantum cryptography. Hybrid constructions
offset the newness of post-quantum algorithms by offering heavily tested classical
algorithms as a fallback.

Sphinx, the nested-packet format, should not be confused with Sphincs or
Sphincs+, which are post-quantum signature schemes.

Katzenpost Sphinx also relies on the following classical cryptographic primitives:

17

https://www.freehaven.net/anonbib/cache/DBLP:conf/sp/DanezisG09.pdf
http://sphincs.org/index.html
http://sphincs.org/index.html

• CTR-AES256, a stream cipher

• HMAC-SHA256, a message authentication code (MAC) function

• HKDF-SHA256, a key derivation function (KDF)

• AEZv5, a strong pseudorandom permutation (SPRP)

All dirauths must be configured to use the same SphinxGeometry parameters.
Any geometry not advertised by the PKI document will fail. Each dirauth
publishes the hash of its SphinxGeometry parameters in the PKI document for
validation by its peer dirauths.

The SphinxGeometry section defines parameters for the Sphinx encrypted
nested-packet format used internally by Katzenpost.

The values in the SphinxGeometry configuration section must be programmati-
cally generated by gensphinx. Many of the parameters are interdependent and
cannot be individually modified. Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which
computes the Sphinx geometry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node’s configu-
ration file, as shown below. For more information, see ???.

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

18

Type: int

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because
packet headers hold destination information for each hop, the size of the
header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet
header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

19

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information
block that we expect to encounter. Other packets have NextNodeHop +
NodeDelay sections, or a Recipient section, both of which are shorter.

Type: int

Required: Yes

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by
Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx
packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

20

Configuring mix nodes

The following configuration is drawn from the reference implementation in
katzenpost/docker/dirauth_mixnet/mix1/katzenpost.toml. In a real-
world mixnet, the component hosts would not be sharing a single IP address.
For more information about the test mixnet, see Using the Katzenpost
Docker test network.

Table 3: Mix node configuration sections

Mix node: Server section
Mix node: Logging section
Mix node: PKI section
Mix node: Management section
Mix node: SphinxGeometry section
Mix node: Debug section

Mix node: Server section The Server section configures mandatory basic
parameters for each server node.

[Server]
Identifier = "mix1"
WireKEM = "xwing"
PKISignatureScheme = "Ed25519"
Addresses = ["127.0.0.1:30008"]
OnlyAdvertiseAltAddresses = false
MetricsAddress = "127.0.0.1:30009"
DataDir = "/dirauth_mixnet/mix1"
IsGatewayNode = false
IsServiceNode = false
[Server.AltAddresses]

• Identifier

Specifies the human-readable identifier for a node, and must be unique per
mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEM

WireKEM specifies the key encapsulation mechanism (KEM) scheme for the
PQ Noise-based wire protocol (link layer) that nodes use to communicate
with each other. PQ Noise is a post-quantum variation of the Noise protocol

21

https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/

framework, which algebraically transforms ECDH handshake patterns into
KEM encapsulate/decapsulate operations.

This configuration option supports the optional use of hybrid post-quantum
cryptography to strengthen security. The following KEM schemes are
supported:

– Classical: ”x25519”, ”x448”

X25519 and X448 are actually non-interactive key-exchanges (NIKEs),
not KEMs. Katzenpost uses a hashed ElGamal cryptographic con-
struction to convert them from NIKEs to KEMs.

– Post-quantum: ”mlkem768”,”sntrup4591761”, ”frodo640shake”,
”mceliece348864”, ”mceliece348864f”, ”mceliece460896”, ”mceliece460896f”,
”mceliece6688128”, ”mceliece6688128f”, ”mceliece6960119”,
”mceliece6960119f”, ”mceliece8192128”, ”mceliece8192128f”,
”CTIDH511”, ”CTIDH512”, ”CTIDH1024”, ”CTIDH2048”,

– Hybrid post-quantum: ”xwing”, ”Kyber768-X25519”,
”MLKEM768-X25519”, ”MLKEM768-X448”, ”FrodoKEM-
640-SHAKE-X448”, ”sntrup4591761-X448”, ”mceliece348864-
X25519”, ”mceliece348864f-X25519”, ”mceliece460896-X25519”,
”mceliece460896f-X25519”, ”mceliece6688128-X25519”, ”mceliece6688128f-
X25519”, ”mceliece6960119-X25519”, ”mceliece6960119f-X25519”,
”mceliece8192128-X25519”, ”mceliece8192128f-X25519”, ”CTIDH512-
X25519”, ”CTIDH512-X25519”

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all
components of the mix network when interacting with the PKI system.
Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

The following signature schemes are supported:

– Classical: ”ed25519”, ”ed448”

– Hybrid post-quantum: ”Ed25519 Sphincs+”, ”Ed448-Sphincs+”,
”Ed25519-Dilithium2”, ”Ed448-Dilithium3”

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the
transport protocol, IP address, and port number that the server will bind

22

https://noiseprotocol.org/
https://noiseprotocol.org/

to for incoming connections. Katzenpost supports URLs with that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

• BindAddresses

If true, allows setting of listener addresses that the server will bind to and
accept connections on. These addresses are not advertised in the PKI.

Type: bool

Required: No

• MetricsAddress

Specifies the address/port to bind the Prometheus metrics endpoint to.

Type: string

Required: No

• DataDir

Specifies the absolute path to a node’s state directory. This is where
persistence.db is written to disk and where a node stores its cryptographic
key materials when started with the ”-g” commmand-line option.

Type: string

Required: Yes

• IsGatewayNode

If true, the server is a gateway node.

Type: bool

Required: No

• IsServiceNode

If true, the server is a service node.

Type: bool

Required: No

Mix node: Logging section

23

The Logging configuration section controls logging behavior across Katzen-
post.

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative
to the DataDir specified in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO
| DEBUG.

Type: string

Required: No

The DEBUG log level is unsafe for production use.

Mix node: PKI section

The PKI section contains the directory authority configuration for a mix,
gateway, or service node.

[PKI]
[PKI.dirauth]

[[PKI.dirauth.Authorities]]
Identifier = "auth1"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

tqN6tpOVotHWXKCszVn2kS7vAZjQpvJjQF3Qz/Qwhyg=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"

24

LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----
JnJ8ztQEIjAkKJcpuZvJAdkWjBim/5G5d8yoosEQHeGJeeBqNPdm2AitUbpiQPcd
tNCo9DxuC9Ieqmsfw0YpV6AtOOsaInA6QnHDYcuBfZcQL5MU4+t2TzpBZQYlrSED
hPCKrAG+8GEUl6akseG371WQzEtPpEWWCJCJOiS/VDFZT7eKrldlumN6gfiB84sR
...
arFh/WKwYJUj+aGBsFYSqGdzC6MdY4x/YyFe2ze0MJEjThQE91y1d/LCQ3Sb7Ri+
u6PBi3JU2qzlPEejDKwK0t5tMNEAkq8iNrpRTdD/hS0gR+ZIN8Z9QKh7Xf94FWG2
H+r8OaqImQhgHabrWRDyLg==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30001"]

[[PKI.dirauth.Authorities]]
Identifier = "auth2"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

O51Ty2WLu4C1ETMa29s03bMXV72gnjJfTfwLV++LVBI=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----

TtQkg2XKUnY602FFBaPJ+zpN0Twy20cwyyFxh7FNUjaXA9MAJXs0vUwFbJc6BjYv
f+olKnlIKFSmDvcF74U6w1F0ObugwTNKNxeYKPKhX4FiencUbRwkHoYHdtZdSctz
TKy08qKQyCAccqCRpdo6ZtYXPAU+2rthjYTOL7Zn+7SHUKCuJClcPnvEYjVcJxtZ
...
ubJIe5U4nMJbBkOqr7Kq6niaEkiLODa0tkpB8tKMYTMBdcYyHSXCzpo7U9sb6LAR
HktiTBDtRXviu2vbw7VRXhkMW2kjYZDtReQ5sAse04DvmD49zgTp1YxYW+wWFaL3
37X7/SNuLdHX4PHZXIWHBQ==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30002"]

[[PKI.dirauth.Authorities]]
Identifier = "auth3"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

zQvydRYJq3npeLcg1NqIf+SswEKE5wFmiwNsI9Z1whQ=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """

-----BEGIN XWING PUBLIC KEY-----
OYK9FiC53xwZ1VST3jDOO4tR+cUMSVRSekmigZMChSjDCPZbKut8TblxtlUfc/yi
Ugorz4NIvYPMWUt3QPwS2UWq8/HMWXNGPUiAevg12+oV+jOJXaJeCfY24UekJnSw
TNcdGaFZFSR0FocFcPBBnrK1M2B8w8eEUKQIsXRDM3x/8aRIuDif+ve8rSwpgKeh
...

25

OdVD3yw7OOS8uPZLORGQFyJbHtVmFPVvwja4G/o2gntAoHUZ2LiJJakpVhhlSyrI
yuzvwwFtZVfWtNb5gAKZCyg0aduR3qgd7MPerRF+YopZk3OCRpC02YxfUZrHv398
FZWJFK0R8iU52CEUxVpXTA==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30003"]

• Identifier

Specifies the human-readable identifier for a node, which must be unique
per mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

String containing the node’s public identity key in PEM format.
IdentityPublicKey is the node’s permanent identifier and is used to
verify cryptographic signatures produced by its private identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all
components of the mix network when interacting with the PKI system.
Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer’s public link-layer key in PEM format.
LinkPublicKey must match the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

The name of the wire protocol key-encapsulation mechanism (KEM) to
use.

Type: string

Required: Yes

26

• Addresses

Specifies a list of one or more address URLs in a format that contains
the transport protocol, IP address, and port number that the server will
bind to for incoming connections. Katzenpost supports URLs that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

Mix node: Management section

The Management section specifies connectivity information for the Katzenpost
control protocol which can be used to make run-time configuration changes. A
configuration resembles the following:

[Management]
Enable = false
Path = "/dirauth_mixnet/mix1/management_sock"

• Enable

If true, the management interface is enabled.

Type: bool

Required: No

• Path

Specifies the path to the management interface socket. If left empty, then
management_sock is located in the configuration’s defined DataDir>.

Type: string

Required: No

Mix node: SphinxGeometry section

The SphinxGeometry section defines parameters for the Sphinx encrypted
nested-packet format used internally by Katzenpost.

The values in the SphinxGeometry configuration section must be programmati-
cally generated by gensphinx. Many of the parameters are interdependent and
cannot be individually modified. Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which
computes the Sphinx geometry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

27

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node’s configu-
ration file, as shown below. For more information, see ???.

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because
packet headers hold destination information for each hop, the size of the
header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet
header.

Type: int

28

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information
block that we expect to encounter. Other packets have NextNodeHop +
NodeDelay sections, or a Recipient section, both of which are shorter.

Type: int

Required: Yes

29

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by
Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx
packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Mix node: Debug section

The Debug section is the Katzenpost server debug configuration for advanced
tuning.

[Debug]
NumSphinxWorkers = 16
NumServiceWorkers = 3
NumGatewayWorkers = 3
NumKaetzchenWorkers = 3
SchedulerExternalMemoryQueue = false
SchedulerQueueSize = 0
SchedulerMaxBurst = 16
UnwrapDelay = 250
GatewayDelay = 500
ServiceDelay = 500
KaetzchenDelay = 750
SchedulerSlack = 150
SendSlack = 50
DecoySlack = 15000
ConnectTimeout = 60000
HandshakeTimeout = 30000

30

ReauthInterval = 30000
SendDecoyTraffic = false
DisableRateLimit = false
GenerateOnly = false

• NumSphinxWorkers

Specifies the number of worker instances to use for inbound Sphinx packet
processing.

Type: int

Required: No

• NumProviderWorkers

Specifies the number of worker instances to use for provider specific packet
processing.

Type: int

Required: No

• NumKaetzchenWorkers

Specifies the number of worker instances to use for Kaetzchen-specific
packet processing.

Type: int

Required: No

• SchedulerExternalMemoryQueue

If true, the experimental disk-backed external memory queue is enabled.

Type: bool

Required: No

• SchedulerQueueSize

Specifies the maximum scheduler queue size before random entries will
start getting dropped. A value less than or equal to zero is treated as
unlimited.

Type: int

Required: No

• SchedulerMaxBurst

Specifies the maximum number of packets that will be dispatched per
scheduler wakeup event.

Type:

Required: No

31

• UnwrapDelay

Specifies the maximum unwrap delay due to queueing in milliseconds.

Type: int

Required: No

• GatewayDelay

Specifies the maximum gateway node worker delay due to queueing in
milliseconds.

Type: int

Required: No

• ServiceDelay

Specifies the maximum provider delay due to queueing in milliseconds.

Type: int

Required: No

• KaetzchenDelay

Specifies the maximum kaetzchen delay due to queueing in milliseconds.

Type: int

Required: No

• SchedulerSlack

Specifies the maximum scheduler slack due to queueing and/or processing
in milliseconds.

Type: int

Required: No

• SendSlack

Specifies the maximum send-queue slack due to queueing and/or congestion
in milliseconds.

Type: int

Required: No

• DecoySlack

Specifies the maximum decoy sweep slack due to external delays such as
latency before a loop decoy packet will be considered lost.

Type: int

Required: No

32

• ConnectTimeout

Specifies the maximum time a connection can take to establish a TCP/IP
connection in milliseconds.

Type: int

Required: No

• HandshakeTimeout

Specifies the maximum time a connection can take for a link-protocol
handshake in milliseconds.

Type: int

Required: No

• ReauthInterval

Specifies the interval at which a connection will be reauthenticated in
milliseconds.

Type: int

Required: No

• SendDecoyTraffic

If true, decoy traffic is enabled. This parameter is experimental and
untuned, and is disabled by default.

This option will be removed once decoy traffic is fully implemented.

Type: bool

Required: No

• DisableRateLimit

If true, the per-client rate limiter is disabled.

This option should only be used for testing.

Type: bool

Required: No

• GenerateOnly

If true, the server immediately halts and cleans up after long-term key
generation.

Type: bool

Required: No

33

Configuring gateway nodes

The following configuration is drawn from the reference implementation in
katzenpost/docker/dirauth_mixnet/gateway1/katzenpost.toml. In a real-
world mixnet, the component hosts would not be sharing a single IP address. For
more information about the test mixnet, see Using the Katzenpost Docker
test network.

Table 4: Gateway node configuration sections

Gateway node: Server section
Gateway node: Logging section
Gateway node: Gateway section
Gateway node: PKI section
Gateway node: Management section
Gateway node: SphinxGeometry section
Gateway node: Debug section

Gateway node: Server section The Server section configures mandatory
basic parameters for each server node.

[Server]
Identifier = "gateway1"
WireKEM = "xwing"
PKISignatureScheme = "Ed25519"
Addresses = ["127.0.0.1:30004"]
OnlyAdvertiseAltAddresses = false
MetricsAddress = "127.0.0.1:30005"
DataDir = "/dirauth_mixnet/gateway1"
IsGatewayNode = true
IsServiceNode = false
[Server.AltAddresses]

TCP = ["localhost:30004"]

• Identifier

Specifies the human-readable identifier for a node, and must be unique per
mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEM

WireKEM specifies the key encapsulation mechanism (KEM) scheme for the
PQ Noise-based wire protocol (link layer) that nodes use to communicate

34

https://eprint.iacr.org/2022/539

with each other. PQ Noise is a post-quantum variation of the Noise protocol
framework, which algebraically transforms ECDH handshake patterns into
KEM encapsulate/decapsulate operations.

This configuration option supports the optional use of hybrid post-quantum
cryptography to strengthen security. The following KEM schemes are
supported:

– Classical: ”x25519”, ”x448”

X25519 and X448 are actually non-interactive key-exchanges (NIKEs),
not KEMs. Katzenpost uses a hashed ElGamal cryptographic con-
struction to convert them from NIKEs to KEMs.

– Post-quantum: ”mlkem768”,”sntrup4591761”, ”frodo640shake”,
”mceliece348864”, ”mceliece348864f”, ”mceliece460896”, ”mceliece460896f”,
”mceliece6688128”, ”mceliece6688128f”, ”mceliece6960119”,
”mceliece6960119f”, ”mceliece8192128”, ”mceliece8192128f”,
”CTIDH511”, ”CTIDH512”, ”CTIDH1024”, ”CTIDH2048”,

– Hybrid post-quantum: ”xwing”, ”Kyber768-X25519”,
”MLKEM768-X25519”, ”MLKEM768-X448”, ”FrodoKEM-
640-SHAKE-X448”, ”sntrup4591761-X448”, ”mceliece348864-
X25519”, ”mceliece348864f-X25519”, ”mceliece460896-X25519”,
”mceliece460896f-X25519”, ”mceliece6688128-X25519”, ”mceliece6688128f-
X25519”, ”mceliece6960119-X25519”, ”mceliece6960119f-X25519”,
”mceliece8192128-X25519”, ”mceliece8192128f-X25519”, ”CTIDH512-
X25519”, ”CTIDH512-X25519”

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all
components of the mix network when interacting with the PKI system.
Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

The following signature schemes are supported:

– Classical: ”ed25519”, ”ed448”

– Hybrid post-quantum: ”Ed25519 Sphincs+”, ”Ed448-Sphincs+”,
”Ed25519-Dilithium2”, ”Ed448-Dilithium3”

Type: string

Required: Yes

• Addresses

35

https://noiseprotocol.org/
https://noiseprotocol.org/

Specifies a list of one or more address URLs in a format that contains the
transport protocol, IP address, and port number that the server will bind
to for incoming connections. Katzenpost supports URLs with that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

• BindAddresses

If true, allows setting of listener addresses that the server will bind to and
accept connections on. These addresses are not advertised in the PKI.

Type: bool

Required: No

• MetricsAddress

Specifies the address/port to bind the Prometheus metrics endpoint to.

Type: string

Required: No

• DataDir

Specifies the absolute path to a node’s state directory. This is where
persistence.db is written to disk and where a node stores its cryptographic
key materials when started with the ”-g” commmand-line option.

Type: string

Required: Yes

• IsGatewayNode

If true, the server is a gateway node.

Type: bool

Required: No

• IsServiceNode

If true, the server is a service node.

Type: bool

Required: No

Gateway node: Logging section

36

The Logging configuration section controls logging behavior across Katzen-
post.

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative
to the DataDir specified in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO
| DEBUG.

Type: string

Required: No

The DEBUG log level is unsafe for production use.

Gateway node: Gateway section The Gateway section of the configuration
is required for configuring a Gateway node. The section must contain UserDBand
SpoolDB definitions. Bolt is an embedded database library for the Go program-
ming language that Katzenpost has used in the past for its user and spool
databases. Because Katzenpost currently persists data on Service nodes instead
of Gateways, these databases will probably be deprecated in favour of in-memory
concurrency structures. In the meantime, it remains necessary to configure a
Gateway node as shown below, only changing the file paths as needed:

[Gateway]
[Gateway.UserDB]

Backend = "bolt"
[Gateway.UserDB.Bolt]

UserDB = "/dirauth_mixnet/gateway1/users.db"
[Gateway.SpoolDB]

37

https://github.com/boltdb/bolt

Backend = "bolt"
[Gateway.SpoolDB.Bolt]

SpoolDB = "/dirauth_mixnet/gateway1/spool.db"

Gateway node: PKI section

The PKI section contains the directory authority configuration for a mix,
gateway, or service node.

[PKI]
[PKI.dirauth]

[[PKI.dirauth.Authorities]]
Identifier = "auth1"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

tqN6tpOVotHWXKCszVn2kS7vAZjQpvJjQF3Qz/Qwhyg=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----

JnJ8ztQEIjAkKJcpuZvJAdkWjBim/5G5d8yoosEQHeGJeeBqNPdm2AitUbpiQPcd
tNCo9DxuC9Ieqmsfw0YpV6AtOOsaInA6QnHDYcuBfZcQL5MU4+t2TzpBZQYlrSED
hPCKrAG+8GEUl6akseG371WQzEtPpEWWCJCJOiS/VDFZT7eKrldlumN6gfiB84sR
...
arFh/WKwYJUj+aGBsFYSqGdzC6MdY4x/YyFe2ze0MJEjThQE91y1d/LCQ3Sb7Ri+
u6PBi3JU2qzlPEejDKwK0t5tMNEAkq8iNrpRTdD/hS0gR+ZIN8Z9QKh7Xf94FWG2
H+r8OaqImQhgHabrWRDyLg==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30001"]

[[PKI.dirauth.Authorities]]
Identifier = "auth2"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

O51Ty2WLu4C1ETMa29s03bMXV72gnjJfTfwLV++LVBI=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----

TtQkg2XKUnY602FFBaPJ+zpN0Twy20cwyyFxh7FNUjaXA9MAJXs0vUwFbJc6BjYv
f+olKnlIKFSmDvcF74U6w1F0ObugwTNKNxeYKPKhX4FiencUbRwkHoYHdtZdSctz
TKy08qKQyCAccqCRpdo6ZtYXPAU+2rthjYTOL7Zn+7SHUKCuJClcPnvEYjVcJxtZ
...
ubJIe5U4nMJbBkOqr7Kq6niaEkiLODa0tkpB8tKMYTMBdcYyHSXCzpo7U9sb6LAR
HktiTBDtRXviu2vbw7VRXhkMW2kjYZDtReQ5sAse04DvmD49zgTp1YxYW+wWFaL3

38

37X7/SNuLdHX4PHZXIWHBQ==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30002"]

[[PKI.dirauth.Authorities]]
Identifier = "auth3"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

zQvydRYJq3npeLcg1NqIf+SswEKE5wFmiwNsI9Z1whQ=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """

-----BEGIN XWING PUBLIC KEY-----
OYK9FiC53xwZ1VST3jDOO4tR+cUMSVRSekmigZMChSjDCPZbKut8TblxtlUfc/yi
Ugorz4NIvYPMWUt3QPwS2UWq8/HMWXNGPUiAevg12+oV+jOJXaJeCfY24UekJnSw
TNcdGaFZFSR0FocFcPBBnrK1M2B8w8eEUKQIsXRDM3x/8aRIuDif+ve8rSwpgKeh
...
OdVD3yw7OOS8uPZLORGQFyJbHtVmFPVvwja4G/o2gntAoHUZ2LiJJakpVhhlSyrI
yuzvwwFtZVfWtNb5gAKZCyg0aduR3qgd7MPerRF+YopZk3OCRpC02YxfUZrHv398
FZWJFK0R8iU52CEUxVpXTA==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30003"]

• Identifier

Specifies the human-readable identifier for a node, which must be unique
per mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

String containing the node’s public identity key in PEM format.
IdentityPublicKey is the node’s permanent identifier and is used to
verify cryptographic signatures produced by its private identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all
components of the mix network when interacting with the PKI system.

39

Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer’s public link-layer key in PEM format.
LinkPublicKey must match the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

The name of the wire protocol key-encapsulation mechanism (KEM) to
use.

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains
the transport protocol, IP address, and port number that the server will
bind to for incoming connections. Katzenpost supports URLs that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

Gateway node: Management section

The Management section specifies connectivity information for the Katzenpost
control protocol which can be used to make run-time configuration changes. A
configuration resembles the following:

[Management]
Enable = false
Path = "/dirauth_mixnet/mix1/management_sock"

• Enable

If true, the management interface is enabled.

Type: bool

Required: No

40

• Path

Specifies the path to the management interface socket. If left empty, then
management_sock is located in the configuration’s defined DataDir>.

Type: string

Required: No

Gateway node: SphinxGeometry section

The SphinxGeometry section defines parameters for the Sphinx encrypted
nested-packet format used internally by Katzenpost.

The values in the SphinxGeometry configuration section must be programmati-
cally generated by gensphinx. Many of the parameters are interdependent and
cannot be individually modified. Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which
computes the Sphinx geometry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node’s configu-
ration file, as shown below. For more information, see ???.

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

41

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because
packet headers hold destination information for each hop, the size of the
header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet
header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

42

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information
block that we expect to encounter. Other packets have NextNodeHop +
NodeDelay sections, or a Recipient section, both of which are shorter.

Type: int

Required: Yes

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by
Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx
packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Gateway node: Debug section

43

The Debug section is the Katzenpost server debug configuration for advanced
tuning.

[Debug]
NumSphinxWorkers = 16
NumServiceWorkers = 3
NumGatewayWorkers = 3
NumKaetzchenWorkers = 3
SchedulerExternalMemoryQueue = false
SchedulerQueueSize = 0
SchedulerMaxBurst = 16
UnwrapDelay = 250
GatewayDelay = 500
ServiceDelay = 500
KaetzchenDelay = 750
SchedulerSlack = 150
SendSlack = 50
DecoySlack = 15000
ConnectTimeout = 60000
HandshakeTimeout = 30000
ReauthInterval = 30000
SendDecoyTraffic = false
DisableRateLimit = false
GenerateOnly = false

• NumSphinxWorkers

Specifies the number of worker instances to use for inbound Sphinx packet
processing.

Type: int

Required: No

• NumProviderWorkers

Specifies the number of worker instances to use for provider specific packet
processing.

Type: int

Required: No

• NumKaetzchenWorkers

Specifies the number of worker instances to use for Kaetzchen-specific
packet processing.

Type: int

Required: No

44

• SchedulerExternalMemoryQueue

If true, the experimental disk-backed external memory queue is enabled.

Type: bool

Required: No

• SchedulerQueueSize

Specifies the maximum scheduler queue size before random entries will
start getting dropped. A value less than or equal to zero is treated as
unlimited.

Type: int

Required: No

• SchedulerMaxBurst

Specifies the maximum number of packets that will be dispatched per
scheduler wakeup event.

Type:

Required: No

• UnwrapDelay

Specifies the maximum unwrap delay due to queueing in milliseconds.

Type: int

Required: No

• GatewayDelay

Specifies the maximum gateway node worker delay due to queueing in
milliseconds.

Type: int

Required: No

• ServiceDelay

Specifies the maximum provider delay due to queueing in milliseconds.

Type: int

Required: No

• KaetzchenDelay

Specifies the maximum kaetzchen delay due to queueing in milliseconds.

Type: int

Required: No

45

• SchedulerSlack

Specifies the maximum scheduler slack due to queueing and/or processing
in milliseconds.

Type: int

Required: No

• SendSlack

Specifies the maximum send-queue slack due to queueing and/or congestion
in milliseconds.

Type: int

Required: No

• DecoySlack

Specifies the maximum decoy sweep slack due to external delays such as
latency before a loop decoy packet will be considered lost.

Type: int

Required: No

• ConnectTimeout

Specifies the maximum time a connection can take to establish a TCP/IP
connection in milliseconds.

Type: int

Required: No

• HandshakeTimeout

Specifies the maximum time a connection can take for a link-protocol
handshake in milliseconds.

Type: int

Required: No

• ReauthInterval

Specifies the interval at which a connection will be reauthenticated in
milliseconds.

Type: int

Required: No

• SendDecoyTraffic

If true, decoy traffic is enabled. This parameter is experimental and
untuned, and is disabled by default.

46

This option will be removed once decoy traffic is fully implemented.

Type: bool

Required: No

• DisableRateLimit

If true, the per-client rate limiter is disabled.

This option should only be used for testing.

Type: bool

Required: No

• GenerateOnly

If true, the server immediately halts and cleans up after long-term key
generation.

Type: bool

Required: No

Configuring service nodes

The following configuration is drawn from the reference implementation in
katzenpost/docker/dirauth_mixnet/servicenode1/authority.toml. In a
real-world mixnet, the component hosts would not be sharing a single IP address.
For more information about the test mixnet, see Using the Katzenpost
Docker test network.

Table 5: Mix node configuration sections

Service node: Server section
Service node: Logging section
Service node: ServiceNode section
Service node: PKI section
Service node: Management section
Service node: SphinxGeometry section
Service node: Debug section

Service node: Server section The Server section configures mandatory
basic parameters for each server node.

[Server]
Identifier = "servicenode1"
WireKEM = "xwing"
PKISignatureScheme = "Ed25519"
Addresses = ["127.0.0.1:30006"]

47

OnlyAdvertiseAltAddresses = false
MetricsAddress = "127.0.0.1:30007"
DataDir = "/dirauth_mixnet/servicenode1"
IsGatewayNode = false
IsServiceNode = true
[Server.AltAddresses]

• Identifier

Specifies the human-readable identifier for a node, and must be unique per
mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• WireKEM

WireKEM specifies the key encapsulation mechanism (KEM) scheme for the
PQ Noise-based wire protocol (link layer) that nodes use to communicate
with each other. PQ Noise is a post-quantum variation of the Noise protocol
framework, which algebraically transforms ECDH handshake patterns into
KEM encapsulate/decapsulate operations.

This configuration option supports the optional use of hybrid post-quantum
cryptography to strengthen security. The following KEM schemes are
supported:

– Classical: ”x25519”, ”x448”

X25519 and X448 are actually non-interactive key-exchanges (NIKEs),
not KEMs. Katzenpost uses a hashed ElGamal cryptographic con-
struction to convert them from NIKEs to KEMs.

– Post-quantum: ”mlkem768”,”sntrup4591761”, ”frodo640shake”,
”mceliece348864”, ”mceliece348864f”, ”mceliece460896”, ”mceliece460896f”,
”mceliece6688128”, ”mceliece6688128f”, ”mceliece6960119”,
”mceliece6960119f”, ”mceliece8192128”, ”mceliece8192128f”,
”CTIDH511”, ”CTIDH512”, ”CTIDH1024”, ”CTIDH2048”,

– Hybrid post-quantum: ”xwing”, ”Kyber768-X25519”,
”MLKEM768-X25519”, ”MLKEM768-X448”, ”FrodoKEM-
640-SHAKE-X448”, ”sntrup4591761-X448”, ”mceliece348864-
X25519”, ”mceliece348864f-X25519”, ”mceliece460896-X25519”,
”mceliece460896f-X25519”, ”mceliece6688128-X25519”, ”mceliece6688128f-
X25519”, ”mceliece6960119-X25519”, ”mceliece6960119f-X25519”,
”mceliece8192128-X25519”, ”mceliece8192128f-X25519”, ”CTIDH512-
X25519”, ”CTIDH512-X25519”

48

https://eprint.iacr.org/2022/539
https://noiseprotocol.org/
https://noiseprotocol.org/

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all
components of the mix network when interacting with the PKI system.
Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

The following signature schemes are supported:

– Classical: ”ed25519”, ”ed448”

– Hybrid post-quantum: ”Ed25519 Sphincs+”, ”Ed448-Sphincs+”,
”Ed25519-Dilithium2”, ”Ed448-Dilithium3”

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains the
transport protocol, IP address, and port number that the server will bind
to for incoming connections. Katzenpost supports URLs with that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

Required: Yes

• BindAddresses

If true, allows setting of listener addresses that the server will bind to and
accept connections on. These addresses are not advertised in the PKI.

Type: bool

Required: No

• MetricsAddress

Specifies the address/port to bind the Prometheus metrics endpoint to.

Type: string

Required: No

• DataDir

Specifies the absolute path to a node’s state directory. This is where
persistence.db is written to disk and where a node stores its cryptographic
key materials when started with the ”-g” commmand-line option.

49

Type: string

Required: Yes

• IsGatewayNode

If true, the server is a gateway node.

Type: bool

Required: No

• IsServiceNode

If true, the server is a service node.

Type: bool

Required: No

Service node: Logging section

The Logging configuration section controls logging behavior across Katzen-
post.

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

• Disable

If true, logging is disabled.

Type: bool

Required: No

• File

Specifies the log file. If omitted, stdout is used.

An absolute or relative file path can be specified. A relative path is relative
to the DataDir specified in the Server section of the configuration.

Type: string

Required: No

• Level

Supported logging level values are ERROR | WARNING | NOTICE |INFO
| DEBUG.

Type: string

Required: No

50

The DEBUG log level is unsafe for production use.

Service node: ServiceNode section The ServiceNode section contains
configurations for each network service that Katzenpost supports.

Services, termed Kaetzchen, can be divided into built-in and external services.
External services are provided through the CBORPlugin, a Go programming
language implementation of the Concise Binary Object Representation (CBOR),
a binary data serialization format. While native services need simply to be
activated, external services are invoked by a separate command and connected
to the mixnet over a Unix socket. The plugin allows mixnet services to be added
in any programming language.

[ServiceNode]

[[ServiceNode.Kaetzchen]]
Capability = "echo"
Endpoint = "+echo"
Disable = false

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "spool"
Endpoint = "+spool"
Command = "/dirauth_mixnet/memspool.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]

data_store = "/dirauth_mixnet/servicenode1/memspool.storage"
log_dir = "/dirauth_mixnet/servicenode1"

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "pigeonhole"
Endpoint = "+pigeonhole"
Command = "/dirauth_mixnet/pigeonhole.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]

db = "/dirauth_mixnet/servicenode1/map.storage"
log_dir = "/dirauth_mixnet/servicenode1"

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "panda"
Endpoint = "+panda"
Command = "/dirauth_mixnet/panda_server.alpine"
MaxConcurrency = 1
Disable = false

51

https://github.com/katzenpost/katzenpost/blob/main/docs/Specificatons/pdf/kaetzchen.pdf
https://pkg.go.dev/github.com/katzenpost/katzenpost@v0.0.35/server/cborplugin#ResponseFactory
https://datatracker.ietf.org/doc/html/rfc8949

[ServiceNode.CBORPluginKaetzchen.Config]
fileStore = "/dirauth_mixnet/servicenode1/panda.storage"
log_dir = "/dirauth_mixnet/servicenode1"
log_level = "INFO"

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "http"
Endpoint = "+http"
Command = "/dirauth_mixnet/proxy_server.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]

host = "localhost:4242"
log_dir = "/dirauth_mixnet/servicenode1"
log_level = "DEBUG"

Common parameters:

• Capability

Specifies the protocol capability exposed by the agent.

Type: string

Required: Yes

• Endpoint

Specifies the provider-side Endpoint where the agent will accept requests.
While not required by the specification, this server only supports Endpoints
that are lower-case local parts of an email address.

Type: string

Required: Yes

• Command

Specifies the full path to the external plugin program that implements this
Kaetzchen service.

Type: string

Required: Yes

• MaxConcurrency

Specifies the number of worker goroutines to start for this service.

Type: int

Required: Yes

• Config

52

Specifies extra per-agent arguments to be passed to the agent’s initialization
routine.

Type: map[string]interface{}

Required: Yes

• Disable

If true, disables a configured agent.

Type: bool

Required: No

Per-service parameters:

• echo

The internal echo service must be enabled on every service node of a
production mixnet for decoy traffic to work properly.

• spool

The spool service supports the catshadow storage protocol, which is
required by the Katzen chat client. The example configuration above
shows spool enabled with the setting:

Disable = false

Spool, properly memspool, should not be confused with the spool database
on gateway nodes.

– data_store

Specifies the full path to the service database file.

Type: string

Required: Yes

– log_dir

Specifies the path to the node’s log directory.

Type: string

Required: Yes

• pigeonhole

The pigeonhole courier service supports the Blinding-and-Capability
scheme (BACAP)-based unlinkable messaging protocols detailed in Place-
holder for research paper link. Most of our future protocols will use
the pigeonhole courier service.

53

– db

Specifies the full path to the service database file.

Type: string

Required: Yes

– log_dir

Specifies the path to the node’s log directory.

Type: string

Required: Yes

• panda

The panda storage and authentication service currently does not work
properly.

– fileStore

Specifies the full path to the service database file.

Type: string

Required: Yes

– log_dir

Specifies the path to the node’s log directory.

Type: string

Required: Yes

– log_level

Supported values are ERROR | WARNING | NOTICE |INFO |
DEBUG.

The DEBUG log level is unsafe for production use.

Type: string

Required: Yes

Required: Yes

• http

The http service is completely optional, but allows the mixnet to be used as
an HTTP proxy. This may be useful for integrating with existing software
systems.

– host

The host name and TCP port of the service.

54

Type: string

Required: Yes

– log_dir

Specifies the path to the node’s log directory.

Type: string

Required: Yes

– log_level

Supported values are ERROR | WARNING | NOTICE |INFO |
DEBUG.

Type: string

Required: Yes

Required: Yes

The DEBUG log level is unsafe for production use.

Type: string

Required: Yes

Service node: PKI section

The PKI section contains the directory authority configuration for a mix,
gateway, or service node.

[PKI]
[PKI.dirauth]

[[PKI.dirauth.Authorities]]
Identifier = "auth1"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

tqN6tpOVotHWXKCszVn2kS7vAZjQpvJjQF3Qz/Qwhyg=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----

JnJ8ztQEIjAkKJcpuZvJAdkWjBim/5G5d8yoosEQHeGJeeBqNPdm2AitUbpiQPcd
tNCo9DxuC9Ieqmsfw0YpV6AtOOsaInA6QnHDYcuBfZcQL5MU4+t2TzpBZQYlrSED
hPCKrAG+8GEUl6akseG371WQzEtPpEWWCJCJOiS/VDFZT7eKrldlumN6gfiB84sR
...
arFh/WKwYJUj+aGBsFYSqGdzC6MdY4x/YyFe2ze0MJEjThQE91y1d/LCQ3Sb7Ri+
u6PBi3JU2qzlPEejDKwK0t5tMNEAkq8iNrpRTdD/hS0gR+ZIN8Z9QKh7Xf94FWG2
H+r8OaqImQhgHabrWRDyLg==

55

-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30001"]

[[PKI.dirauth.Authorities]]
Identifier = "auth2"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

O51Ty2WLu4C1ETMa29s03bMXV72gnjJfTfwLV++LVBI=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """-----BEGIN XWING PUBLIC KEY-----

TtQkg2XKUnY602FFBaPJ+zpN0Twy20cwyyFxh7FNUjaXA9MAJXs0vUwFbJc6BjYv
f+olKnlIKFSmDvcF74U6w1F0ObugwTNKNxeYKPKhX4FiencUbRwkHoYHdtZdSctz
TKy08qKQyCAccqCRpdo6ZtYXPAU+2rthjYTOL7Zn+7SHUKCuJClcPnvEYjVcJxtZ
...
ubJIe5U4nMJbBkOqr7Kq6niaEkiLODa0tkpB8tKMYTMBdcYyHSXCzpo7U9sb6LAR
HktiTBDtRXviu2vbw7VRXhkMW2kjYZDtReQ5sAse04DvmD49zgTp1YxYW+wWFaL3
37X7/SNuLdHX4PHZXIWHBQ==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30002"]

[[PKI.dirauth.Authorities]]
Identifier = "auth3"
IdentityPublicKey = """-----BEGIN ED25519 PUBLIC KEY-----

zQvydRYJq3npeLcg1NqIf+SswEKE5wFmiwNsI9Z1whQ=
-----END ED25519 PUBLIC KEY-----
"""

PKISignatureScheme = "Ed25519"
LinkPublicKey = """

-----BEGIN XWING PUBLIC KEY-----
OYK9FiC53xwZ1VST3jDOO4tR+cUMSVRSekmigZMChSjDCPZbKut8TblxtlUfc/yi
Ugorz4NIvYPMWUt3QPwS2UWq8/HMWXNGPUiAevg12+oV+jOJXaJeCfY24UekJnSw
TNcdGaFZFSR0FocFcPBBnrK1M2B8w8eEUKQIsXRDM3x/8aRIuDif+ve8rSwpgKeh
...
OdVD3yw7OOS8uPZLORGQFyJbHtVmFPVvwja4G/o2gntAoHUZ2LiJJakpVhhlSyrI
yuzvwwFtZVfWtNb5gAKZCyg0aduR3qgd7MPerRF+YopZk3OCRpC02YxfUZrHv398
FZWJFK0R8iU52CEUxVpXTA==
-----END XWING PUBLIC KEY-----
"""

WireKEMScheme = "xwing"
Addresses = ["127.0.0.1:30003"]

56

• Identifier

Specifies the human-readable identifier for a node, which must be unique
per mixnet. The identifier can be an FQDN but does not have to be.

Type: string

Required: Yes

• IdentityPublicKey

String containing the node’s public identity key in PEM format.
IdentityPublicKey is the node’s permanent identifier and is used to
verify cryptographic signatures produced by its private identity key.

Type: string

Required: Yes

• PKISignatureScheme

Specifies the cryptographic signature scheme that will be used by all
components of the mix network when interacting with the PKI system.
Mix nodes sign their descriptors using this signature scheme, and dirauth
nodes similarly sign PKI documents using the same scheme.

Type: string

Required: Yes

• LinkPublicKey

String containing the peer’s public link-layer key in PEM format.
LinkPublicKey must match the specified WireKEMScheme.

Type: string

Required: Yes

• WireKEMScheme

The name of the wire protocol key-encapsulation mechanism (KEM) to
use.

Type: string

Required: Yes

• Addresses

Specifies a list of one or more address URLs in a format that contains
the transport protocol, IP address, and port number that the server will
bind to for incoming connections. Katzenpost supports URLs that start
with either ”tcp://” or ”quic://” such as: [”tcp://192.168.1.1:30001”] and
[”quic://192.168.1.1:40001”].

Type: []string

57

Required: Yes

Service node: Management section

The Management section specifies connectivity information for the Katzenpost
control protocol which can be used to make run-time configuration changes. A
configuration resembles the following:

[Management]
Enable = false
Path = "/dirauth_mixnet/mix1/management_sock"

• Enable

If true, the management interface is enabled.

Type: bool

Required: No

• Path

Specifies the path to the management interface socket. If left empty, then
management_sock is located in the configuration’s defined DataDir>.

Type: string

Required: No

Service node: SphinxGeometry section

The SphinxGeometry section defines parameters for the Sphinx encrypted
nested-packet format used internally by Katzenpost.

The values in the SphinxGeometry configuration section must be programmati-
cally generated by gensphinx. Many of the parameters are interdependent and
cannot be individually modified. Do not modify the these values by hand.

The settings in this section are generated by the gensphinx utility, which
computes the Sphinx geometry based on the following user-supplied directives:

• The number of mix node layers (not counting gateway and service nodes)

• The length of the application-usable packet payload

• The selected NIKE or KEM scheme

The output in TOML should then be pasted unchanged into the node’s configu-
ration file, as shown below. For more information, see ???.

[SphinxGeometry]
PacketLength = 3082
NrHops = 5

58

HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

• PacketLength

The length of a Sphinx packet in bytes.

Type: int

Required: Yes

• NrHops

The number of hops a Sphinx packet takes through the mixnet. Because
packet headers hold destination information for each hop, the size of the
header increases linearly with the number of hops.

Type: int

Required: Yes

• HeaderLength

The total length of the Sphinx packet header in bytes.

Type: int

Required: Yes

• RoutingInfoLength

The total length of the routing information portion of the Sphinx packet
header.

Type: int

Required: Yes

• PerHopRoutingInfoLength

The length of the per-hop routing information in the Sphinx packet header.

Type: int

Required: Yes

59

• SURBLength

The length of a single-use reply block (SURB).

Type: int

Required: Yes

• SphinxPlaintextHeaderLength

The length of the plaintext Sphinx packet header.

Type: int

Required: Yes

• PayloadTagLength

The length of the payload tag.

Type: int

Required: Yes

• ForwardPayloadLength

The total size of the payload.

Type: int

Required: Yes

• UserForwardPayloadLength

The size of the usable payload.

Type: int

Required: Yes

• NextNodeHopLength

The NextNodeHopLength is derived from the largest routing-information
block that we expect to encounter. Other packets have NextNodeHop +
NodeDelay sections, or a Recipient section, both of which are shorter.

Type: int

Required: Yes

• SPRPKeyMaterialLength

The length of the strong pseudo-random permutation (SPRP) key.

Type: int

Required: Yes

60

• NIKEName

The name of the non-interactive key exchange (NIKE) scheme used by
Sphinx packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

• KEMName

The name of the key encapsulation mechanism (KEM) used by Sphinx
packets.

NIKEName and KEMName are mutually exclusive.

Type: string

Required: Yes

Service node: Debug section

The Debug section is the Katzenpost server debug configuration for advanced
tuning.

[Debug]
NumSphinxWorkers = 16
NumServiceWorkers = 3
NumGatewayWorkers = 3
NumKaetzchenWorkers = 3
SchedulerExternalMemoryQueue = false
SchedulerQueueSize = 0
SchedulerMaxBurst = 16
UnwrapDelay = 250
GatewayDelay = 500
ServiceDelay = 500
KaetzchenDelay = 750
SchedulerSlack = 150
SendSlack = 50
DecoySlack = 15000
ConnectTimeout = 60000
HandshakeTimeout = 30000
ReauthInterval = 30000
SendDecoyTraffic = false
DisableRateLimit = false
GenerateOnly = false

• NumSphinxWorkers

61

Specifies the number of worker instances to use for inbound Sphinx packet
processing.

Type: int

Required: No

• NumProviderWorkers

Specifies the number of worker instances to use for provider specific packet
processing.

Type: int

Required: No

• NumKaetzchenWorkers

Specifies the number of worker instances to use for Kaetzchen-specific
packet processing.

Type: int

Required: No

• SchedulerExternalMemoryQueue

If true, the experimental disk-backed external memory queue is enabled.

Type: bool

Required: No

• SchedulerQueueSize

Specifies the maximum scheduler queue size before random entries will
start getting dropped. A value less than or equal to zero is treated as
unlimited.

Type: int

Required: No

• SchedulerMaxBurst

Specifies the maximum number of packets that will be dispatched per
scheduler wakeup event.

Type:

Required: No

• UnwrapDelay

Specifies the maximum unwrap delay due to queueing in milliseconds.

Type: int

Required: No

62

• GatewayDelay

Specifies the maximum gateway node worker delay due to queueing in
milliseconds.

Type: int

Required: No

• ServiceDelay

Specifies the maximum provider delay due to queueing in milliseconds.

Type: int

Required: No

• KaetzchenDelay

Specifies the maximum kaetzchen delay due to queueing in milliseconds.

Type: int

Required: No

• SchedulerSlack

Specifies the maximum scheduler slack due to queueing and/or processing
in milliseconds.

Type: int

Required: No

• SendSlack

Specifies the maximum send-queue slack due to queueing and/or congestion
in milliseconds.

Type: int

Required: No

• DecoySlack

Specifies the maximum decoy sweep slack due to external delays such as
latency before a loop decoy packet will be considered lost.

Type: int

Required: No

• ConnectTimeout

Specifies the maximum time a connection can take to establish a TCP/IP
connection in milliseconds.

Type: int

63

Required: No

• HandshakeTimeout

Specifies the maximum time a connection can take for a link-protocol
handshake in milliseconds.

Type: int

Required: No

• ReauthInterval

Specifies the interval at which a connection will be reauthenticated in
milliseconds.

Type: int

Required: No

• SendDecoyTraffic

If true, decoy traffic is enabled. This parameter is experimental and
untuned, and is disabled by default.

This option will be removed once decoy traffic is fully implemented.

Type: bool

Required: No

• DisableRateLimit

If true, the per-client rate limiter is disabled.

This option should only be used for testing.

Type: bool

Required: No

• GenerateOnly

If true, the server immediately halts and cleans up after long-term key
generation.

Type: bool

Required: No

Using the Katzenpost Docker test network
Katzenpost provides a ready-to-deploy Docker image for developers who need a
non-production test environment for developing and testing client applications
and server side plugins. By running this image on a single computer, you avoid

64

the need to build and manage a complex multi-node mix net. The image can
also be run using Podman

The test mix network includes the following components:

• Three directory authority (PKI) nodes

• Six mix nodes, including one node serving also as both gateway and service
provider

• A ping utility, run-ping

Requirements
Before running the Katzenpost docker image, make sure that the following
software is installed.

• A Debian GNU Linux or Ubuntu system

• Git

• Go

• GNU Make

• Prometheus

• Docker, Docker Compose, and (optionally) Podman

If both Docker and Podman are present on your system, Katzenpost uses
Podman. Podman is a drop-in daemonless equivalent to Docker that does
not require superuser privileges to run.

On Debian, these software requirements can be installed with the following
commands (running as superuser). Apt will pull in the needed dependencies.

apt update
apt install git golang make docker docker-compose podman

Preparing to run the container image
Complete the following procedure to obtain, build, and deploy the Katzenpost
test network.

• Install the Katzenpost code repository, hosted at . The main Katzenpost
repository contains code for the server components as well as the docker
image. Clone the repository with the following command (your directory
location may vary):

~$ git clone https://github.com/katzenpost/katzenpost.git

• Navigate to the new katzenpost subdirectory and ensure that the code is
up to date.

65

https://podman.io/
https://katzenpost.network/docs/specs/pki/
https://katzenpost.network/docs/specs/mixnet/
https://debian.org
https://ubuntu.com
https://git-scm.com/
https://go.dev/
https://www.gnu.org/software/make/
https://prometheus.io/docs/introduction/overview/
https://www.docker.com
https://docs.docker.com/compose/
https://podman.io

~$ cd katzenpost
~/katzenpost$ git checkout main
~/katzenpost$ git pull

• (Optional) Create a development branch and check it out.

~/katzenpost$ git checkout -b devel

• (Optional) If you are using Podman, complete the following steps:

– Point the DOCKER_HOST environment variable at the Podman
process.

$ export DOCKER_HOST=unix:///var/run/user/$(id -u)/podman/podman.sock

– Set up and start the Podman server (as superuser).

$ podman system service -t 0 $DOCKER_HOST &
$ systemctl --user enable --now podman.socket

Operating the test mixnet
Navigate to katzenpost/docker. The Makefile contains target operations to
create, manage, and test the self-contained Katzenpost container network. To
invoke a target, run a command with the using the following pattern:

~/katzenpost/docker$ make target

Running make with no target specified returns a list of available targets.

Table 6: Table 1: Makefile targets

[none] Display this list of targets.
start Run the test network in the background.
stop Stop the test network.
wait Wait for the test network to have consensus.
watch Display live log entries until Ctrl-C.
status Show test network consensus status.
show-latest-vote Show latest consensus vote.
run-ping Send a ping over the test network.
clean-bin Stop all components and delete binaries.
clean-local Stop all components, delete binaries, and delete data.
clean-local-dryrun Show what clean-local would delete.
clean Same as clean-local, but also deletes go_deps image.

Starting and monitoring the mixnet

The first time that you run make start, the Docker image is downloaded, built,
installed, and started. This takes several minutes. When the build is complete,

66

the command exits while the network remains running in the background.

~/katzenpost/docker$ make start

Subsequent runs of make start either start or restart the network without
building the components from scratch. The exception to this is when you delete
any of the Katzenpost binaries (dirauth.alpine, server.alpine, etc.). In that case,
make start rebuilds just the parts of the network dependent on the deleted
binary. For more information about the files created during the Docker build,
see Network topology and components.

When running make start , be aware of the following considerations:

• If you intend to use Docker, you need to run make as superuser.
If you are using sudo to elevate your privileges, you need to edit
katzenpost/docker/Makefile to prepend sudo to each command
contained in it.

• If you have Podman installed on your system and you nonetheless want to
run Docker, you can override the default behavior by adding the argument
docker=docker to the command as in the following:

~/katzenpost/docker$ make run docker=docker

After the make start command exits, the mixnet runs in the background, and
you can run make watch to display a live log of the network activity.

~/katzenpost/docker$ make watch
...
<output>
...

When installation is complete, the mix servers vote and reach a consensus. You
can use the wait target to wait for the mixnet to get consensus and be ready to
use. This can also take several minutes:

~/katzenpost/docker$ make wait
...
<output>
...

You can confirm that installation and configuration are complete by issuing
the status command from the same or another terminal. When the network
is ready for use, status begins returning consensus information similar to the
following:

~/katzenpost/docker$ make status
...
00:15:15.003 NOTI state: Consensus made for epoch 1851128 with 3/3 signatures: &{Epoch: 1851128 GenesisEpoch: 1851118
...

67

Testing the mixnet

At this point, you should have a locally running mix network. You can test
whether it is working correctly by using run-ping, which launches a packet into
the network and watches for a successful reply. Run the following command:

~/katzenpost/docker$ make run-ping

If the network is functioning properly, the resulting output contains lines similar
to the following:

19:29:53.541 INFO gateway1_client: sending loop decoy
!19:29:54.108 INFO gateway1_client: sending loop decoy
19:29:54.632 INFO gateway1_client: sending loop decoy
19:29:55.160 INFO gateway1_client: sending loop decoy
!19:29:56.071 INFO gateway1_client: sending loop decoy
!19:29:59.173 INFO gateway1_client: sending loop decoy
!Success rate is 100.000000 percent 10/10)

lf run-ping fails to receive a reply, it eventually times out with an error message.
If this happens, try the command again.

If you attempt use run-ping too quickly after starting the mixnet, and consensus
has not been reached, the utility may crash with an error message or hang
indefinitely. If this happens, issue (if necessary) a Ctrl-C key sequence to abort,
check the consensus status with the status command, and then retry run-ping.

Shutting down the mixnet

The mix network continues to run in the terminal where you started it until
you issue a Ctrl-C key sequence, or until you issue the following command in
another terminal:

~/katzenpost/docker$ make stop

When you stop the network, the binaries and data are left in place. This allows
for a quick restart.

Uninstalling and cleaning up

Several command targets can be used to uninstall the Docker image and restore
your system to a clean state. The following examples demonstrate the commands
and their output.

• clean-bin

To stop the network and delete the compiled binaries, run the following
command:

~/katzenpost/docker$ make clean-bin

68

[-e voting_mixnet] && cd voting_mixnet && DOCKER_HOST=unix:///run/user/1000/podman/podman.sock docker-
compose down --remove-orphans; rm -fv running.stamp

Stopping voting_mixnet_auth3_1 ... done
Stopping voting_mixnet_servicenode1_1 ... done
Stopping voting_mixnet_metrics_1 ... done
Stopping voting_mixnet_mix3_1 ... done
Stopping voting_mixnet_auth2_1 ... done
Stopping voting_mixnet_mix2_1 ... done
Stopping voting_mixnet_gateway1_1 ... done
Stopping voting_mixnet_auth1_1 ... done
Stopping voting_mixnet_mix1_1 ... done
Removing voting_mixnet_auth3_1 ... done
Removing voting_mixnet_servicenode1_1 ... done
Removing voting_mixnet_metrics_1 ... done
Removing voting_mixnet_mix3_1 ... done
Removing voting_mixnet_auth2_1 ... done
Removing voting_mixnet_mix2_1 ... done
Removing voting_mixnet_gateway1_1 ... done
Removing voting_mixnet_auth1_1 ... done
Removing voting_mixnet_mix1_1 ... done
removed 'running.stamp'
rm -vf ./voting_mixnet/*.alpine
removed './voting_mixnet/echo_server.alpine'
removed './voting_mixnet/fetch.alpine'
removed './voting_mixnet/memspool.alpine'
removed './voting_mixnet/panda_server.alpine'
removed './voting_mixnet/pigeonhole.alpine'
removed './voting_mixnet/ping.alpine'
removed './voting_mixnet/reunion_katzenpost_server.alpine'
removed './voting_mixnet/server.alpine'
removed './voting_mixnet/voting.alpine'

This command leaves in place the cryptographic keys, the state data, and
the logs.

• clean-local-dryrun

To diplay a preview of what clean-local would remove, without actually
deleting anything, run the following command:

~/katzenpost/docker$ make clean-local-dryrun

• clean-local

To delete both compiled binaries and data, run the following command:

~/katzenpost/docker$ make clean-local

69

[-e voting_mixnet] && cd voting_mixnet && DOCKER_HOST=unix:///run/user/1000/podman/podman.sock docker-
compose down --remove-orphans; rm -fv running.stamp

Removing voting_mixnet_mix2_1 ... done
Removing voting_mixnet_auth1_1 ... done
Removing voting_mixnet_auth2_1 ... done
Removing voting_mixnet_gateway1_1 ... done
Removing voting_mixnet_mix1_1 ... done
Removing voting_mixnet_auth3_1 ... done
Removing voting_mixnet_mix3_1 ... done
Removing voting_mixnet_servicenode1_1 ... done
Removing voting_mixnet_metrics_1 ... done
removed 'running.stamp'
rm -vf ./voting_mixnet/*.alpine
removed './voting_mixnet/echo_server.alpine'
removed './voting_mixnet/fetch.alpine'
removed './voting_mixnet/memspool.alpine'
removed './voting_mixnet/panda_server.alpine'
removed './voting_mixnet/pigeonhole.alpine'
removed './voting_mixnet/reunion_katzenpost_server.alpine'
removed './voting_mixnet/server.alpine'
removed './voting_mixnet/voting.alpine'
git clean -f -x voting_mixnet
Removing voting_mixnet/
git status .
On branch main
Your branch is up to date with 'origin/main'.

• clean

To stop the the network and delete the binaries, the data, and the go_deps
image, run the following command as superuser:

~/katzenpost/docker$ sudo make clean

Network topology and components
The Docker image deploys a working mixnet with all components and component
groups needed to perform essential mixnet functions:

• message mixing (including packet reordering, timing randomization, injec-
tion of decoy traffic, obfuscation of senders and receivers, and so on)

• service provisioning

• internal authentication and integrity monitoring

• interfacing with external clients

While suited for client development and testing, the test mixnet omits perfor-
mance and security redundancies. Do not use it in production.

70

The following diagram illustrates the components and their network interactions.
The gray blocks represent nodes, and the arrows represent information transfer.

Figure 2: Test network topology

On the left, the Client transmits a message (shown by purple arrows) through
the Gateway node, across three mix node layers, to the Service node. The
Service node processes the request and responds with a reply (shown by the
green arrows) that traverses the mix node layers before exiting the mixnet via
the Gateway node and arriving at the Client.

On the right, directory authorities Dirauth 1, Dirauth 2, and Dirauth 3
provide PKI services. The directory authorities receive mix descriptors from
the other nodes, collate these into a consensus document containing validated
network status and authentication materials , and make that available to the
other nodes.

The elements in the topology diagram map to the mixnet’s component nodes
as shown in the following table. Note that all nodes share the same IP address
(127.0.0.1, i.e., localhost), but are accessed through different ports. Each node
type links to additional information in Components and configuration of the
Katzenpost mixnet.

71

Table 7: Table 2: Test mixnet hosts

Node type Docker ID
Diagram
label IP address TCP port

Directory
authority

auth1 Dirauth1 127.0.0.1
(localhost)

30001

auth2 Dirauth 2 30002
auth3 Dirauth 3 30003
Gateway
node

gateway1 Gateway
node

30004

Service node servicenode1 Service node 30006
Mix node mix1 Layer 1 mix

node
30008

mix2 Layer 2 mix
node

30010

mix3 Layer 3 mix
node

30012

The Docker file tree

The following tree output shows the location, relative to the katzenpost reposi-
tory root, of the files created by the Docker build. During testing and use, you
would normally touch only the TOML configuration file associated with each
node, as highlighted in the listing. For help in understanding these files and a
complete list of configuration options, follow the links in Table 2: Test mixnet
hosts.

katzenpost/docker/voting_mixnet/
|---auth1
| |---authority.toml
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---link.private.pem
| |---link.public.pem
| |---persistence.db
|---auth2
| |---authority.toml
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---link.private.pem
| |---link.public.pem

72

https://manpages.debian.org/bookworm/tree/tree.1.en.html

| |---persistence.db
|---auth3
| |---authority.toml
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---link.private.pem
| |---link.public.pem
| |---persistence.db
|---client
| |---client.toml
|---client2
| |---client.toml
|---dirauth.alpine
|---docker-compose.yml
|---echo_server.alpine
|---fetch.alpine
|---gateway1
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
| |---management_sock
| |---spool.db
| |---users.db
|---memspool.alpine
|---mix1
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
|---mix2
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
|---mix3
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log

73

| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
|---panda_server.alpine
|---pigeonhole.alpine
|---ping.alpine
|---prometheus.yml
|---proxy_client.alpine
|---proxy_server.alpine
|---running.stamp
|---server.alpine
|---servicenode1
| |---identity.private.pem
| |---identity.public.pem
| |---katzenpost.log
| |---katzenpost.toml
| |---link.private.pem
| |---link.public.pem
| |---management_sock
| |---map.storage
| |---memspool.13.log
| |---memspool.storage
| |---panda.25.log
| |---panda.storage
| |---pigeonHole.19.log
| |---proxy.31.log
|---voting_mixnet

Examples of complete TOML configuration files are provided in Appendix:
Configuration files from the Docker test mixnet .

Appendix: Configuration files from the Docker
test mixnet
As an aid to adminstrators implementing a Katzenpost mixnet, this appendix
provides lightly edited examples of configuration files for each Katzenpost node
type. These files are drawn from a built instance of the Docker test mixnet.
These code listings are meant to be used as a reference alongside the detailed
configuration documentation in Components and configuration of the Katzenpost
mixnet. You cannot use these listings as a drop-in solution in your own mixnets
for reasons explained in the Network topology and components section of the
Docker test mixnet documentation.

74

Directory authority
Source: ../katzenpost/docker/voting_mixnet/auth1/authority.toml

[Server]
Identifier = "auth1"
WireKEMScheme = "xwing"
PKISignatureScheme = "Ed448-Dilithium3"
Addresses = ["tcp://127.0.0.1:30001"]
DataDir = "/voting_mixnet/auth1"

[[Authorities]]
Identifier = "auth1"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"
PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30001"]

[[Authorities]]
Identifier = "auth2"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"
PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30002"]

[[Authorities]]
Identifier = "auth3"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nJzkFpS035de1PmA2MM [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"
PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30003"]

[Logging]
Disable = false

75

File = "katzenpost.log"
Level = "INFO"

[Parameters]
SendRatePerMinute = 0
Mu = 0.005
MuMaxDelay = 1000
LambdaP = 0.001
LambdaPMaxDelay = 1000
LambdaL = 0.0005
LambdaLMaxDelay = 1000
LambdaD = 0.0005
LambdaDMaxDelay = 3000
LambdaM = 0.0005
LambdaG = 0.0
LambdaMMaxDelay = 100
LambdaGMaxDelay = 100

[Debug]
Layers = 3
MinNodesPerLayer = 1
GenerateOnly = false

[[Mixes]]
Identifier = "mix1"
IdentityPublicKeyPem = "../mix1/identity.public.pem"

[[Mixes]]
Identifier = "mix2"
IdentityPublicKeyPem = "../mix2/identity.public.pem"

[[Mixes]]
Identifier = "mix3"
IdentityPublicKeyPem = "../mix3/identity.public.pem"

[[GatewayNodes]]
Identifier = "gateway1"
IdentityPublicKeyPem = "../gateway1/identity.public.pem"

[[ServiceNodes]]
Identifier = "servicenode1"
IdentityPublicKeyPem = "../servicenode1/identity.public.pem"

[Topology]

[[Topology.Layers]]

76

[[Topology.Layers.Nodes]]
Identifier = "mix1"
IdentityPublicKeyPem = "../mix1/identity.public.pem"

[[Topology.Layers]]

[[Topology.Layers.Nodes]]
Identifier = "mix2"
IdentityPublicKeyPem = "../mix2/identity.public.pem"

[[Topology.Layers]]

[[Topology.Layers.Nodes]]
Identifier = "mix3"
IdentityPublicKeyPem = "../mix3/identity.public.pem"

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

Mix node
Source:../katzenpost/docker/voting_mixnet/mix1/katzenpost.toml

[Server]
Identifier = "mix1"
WireKEM = "xwing"
PKISignatureScheme = "Ed448-Dilithium3"
Addresses = ["tcp://127.0.0.1:30010", "quic://[::1]:30011"]
MetricsAddress = "127.0.0.1:30012"
DataDir = "/voting_mixnet/mix1"
IsGatewayNode = false
IsServiceNode = false

77

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

[PKI]
[PKI.Voting]

[[PKI.Voting.Authorities]]
Identifier = "auth1"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30001"]

[[PKI.Voting.Authorities]]
Identifier = "auth2"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30002"]

[[PKI.Voting.Authorities]]
Identifier = "auth3"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nJzkFpS035de1PmA2M [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30003"]

[Management]
Enable = false
Path = "/voting_mixnet/mix1/management_sock"

78

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

[Debug]
NumSphinxWorkers = 16
NumServiceWorkers = 3
NumGatewayWorkers = 3
NumKaetzchenWorkers = 3
SchedulerExternalMemoryQueue = false
SchedulerQueueSize = 0
SchedulerMaxBurst = 16
UnwrapDelay = 250
GatewayDelay = 500
ServiceDelay = 500
KaetzchenDelay = 750
SchedulerSlack = 150
SendSlack = 50
DecoySlack = 15000
ConnectTimeout = 60000
HandshakeTimeout = 30000
ReauthInterval = 30000
SendDecoyTraffic = false
DisableRateLimit = false
GenerateOnly = false

Gateway node
Source: ../katzenpost/docker/voting_mixnet/gateway1/katzenpost.toml

[Server]
Identifier = "gateway1"
WireKEM = "xwing"
PKISignatureScheme = "Ed448-Dilithium3"

79

Addresses = ["tcp://127.0.0.1:30004", "quic://[::1]:30005", "onion://thisisjustatestoniontoverifythatconfigandpkiworkproperly.onion:4242"]
BindAddresses = ["tcp://127.0.0.1:30004", "quic://[::1]:30005"]
MetricsAddress = "127.0.0.1:30006"
DataDir = "/voting_mixnet/gateway1"
IsGatewayNode = true
IsServiceNode = false

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

[Gateway]
[Gateway.UserDB]
Backend = "bolt"
[Gateway.UserDB.Bolt]
UserDB = "/voting_mixnet/gateway1/users.db"

[Gateway.SpoolDB]
Backend = "bolt"
[Gateway.SpoolDB.Bolt]
SpoolDB = "/voting_mixnet/gateway1/spool.db"

[PKI]
[PKI.Voting]

[[PKI.Voting.Authorities]]
Identifier = "auth1"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30001"]

[[PKI.Voting.Authorities]]
Identifier = "auth2"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30002"]

80

[[PKI.Voting.Authorities]]
Identifier = "auth3"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nJzkFpS035de1PmA2MM [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30003"]

[Management]
Enable = true
Path = "/voting_mixnet/gateway1/management_sock"

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

[Debug]
NumSphinxWorkers = 16
NumServiceWorkers = 3
NumGatewayWorkers = 3
NumKaetzchenWorkers = 3
SchedulerExternalMemoryQueue = false
SchedulerQueueSize = 0
SchedulerMaxBurst = 16
UnwrapDelay = 250
GatewayDelay = 500
ServiceDelay = 500
KaetzchenDelay = 750
SchedulerSlack = 150
SendSlack = 50

81

DecoySlack = 15000
ConnectTimeout = 60000
HandshakeTimeout = 30000
ReauthInterval = 30000
SendDecoyTraffic = false
DisableRateLimit = false
GenerateOnly = false

Service node
Source: ../katzenpost/docker/voting_mixnet/servicenode1/katzenpost.toml

[Server]
Identifier = "servicenode1"
WireKEM = "xwing"
PKISignatureScheme = "Ed448-Dilithium3"
Addresses = ["tcp://127.0.0.1:30007", "quic://[::1]:30008"]
MetricsAddress = "127.0.0.1:30009"
DataDir = "/voting_mixnet/servicenode1"
IsGatewayNode = false
IsServiceNode = true

[Logging]
Disable = false
File = "katzenpost.log"
Level = "INFO"

[ServiceNode]

[[ServiceNode.Kaetzchen]]
Capability = "echo"
Endpoint = "+echo"
Disable = false

[[ServiceNode.Kaetzchen]]
Capability = "testdest"
Endpoint = "+testdest"
Disable = false

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "spool"
Endpoint = "+spool"
Command = "/voting_mixnet/memspool.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]

82

data_store = "/voting_mixnet/servicenode1/memspool.storage"
log_dir = "/voting_mixnet/servicenode1"

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "pigeonhole"
Endpoint = "+pigeonhole"
Command = "/voting_mixnet/pigeonhole.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]
db = "/voting_mixnet/servicenode1/map.storage"
log_dir = "/voting_mixnet/servicenode1"

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "panda"
Endpoint = "+panda"
Command = "/voting_mixnet/panda_server.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]
fileStore = "/voting_mixnet/servicenode1/panda.storage"
log_dir = "/voting_mixnet/servicenode1"
log_level = "INFO"

[[ServiceNode.CBORPluginKaetzchen]]
Capability = "http"
Endpoint = "+http"
Command = "/voting_mixnet/proxy_server.alpine"
MaxConcurrency = 1
Disable = false
[ServiceNode.CBORPluginKaetzchen.Config]
host = "localhost:4242"
log_dir = "/voting_mixnet/servicenode1"
log_level = "DEBUG"

[PKI]
[PKI.Voting]

[[PKI.Voting.Authorities]]
Identifier = "auth1"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nfvcvAfUpeu7lMHjQBw [...] Gpi8ovBXl9ENIHLwA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nsxxS04mftoEmwjxE/w [...] expP2fbERpGQwVNg==\n-----

END XWING PUBLIC KEY-----\n"

83

WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30001"]

[[PKI.Voting.Authorities]]
Identifier = "auth2"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\n5nsy6uFQ1782fZ+iYn [...] Sdr2xoinylYJr/3AA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\nkQzCJvaS6jg06szLea [...] PG1Bzx1JwHGFxRBQ==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30002"]

[[PKI.Voting.Authorities]]
Identifier = "auth3"
IdentityPublicKey = "-----BEGIN ED448-DILITHIUM3 PUBLIC KEY-----

\nJzkFpS035de1PmA2MM [...] jo6Z7is9GLs0YxVQA=\n-----END ED448-
DILITHIUM3 PUBLIC KEY-----\n"

PKISignatureScheme = "Ed448-Dilithium3"
LinkPublicKey = "-----BEGIN XWING PUBLIC KEY-----\n+pIUsgEGwHa8k4GZcb [...] 1mxoc+4kcgZWuOAg==\n-----

END XWING PUBLIC KEY-----\n"
WireKEMScheme = "xwing"
Addresses = ["tcp://127.0.0.1:30003"]

[Management]
Enable = true
Path = "/voting_mixnet/servicenode1/management_sock"

[SphinxGeometry]
PacketLength = 3082
NrHops = 5
HeaderLength = 476
RoutingInfoLength = 410
PerHopRoutingInfoLength = 82
SURBLength = 572
SphinxPlaintextHeaderLength = 2
PayloadTagLength = 32
ForwardPayloadLength = 2574
UserForwardPayloadLength = 2000
NextNodeHopLength = 65
SPRPKeyMaterialLength = 64
NIKEName = "x25519"
KEMName = ""

[Debug]

84

NumSphinxWorkers = 16
NumServiceWorkers = 3
NumGatewayWorkers = 3
NumKaetzchenWorkers = 4
SchedulerExternalMemoryQueue = false
SchedulerQueueSize = 0
SchedulerMaxBurst = 16
UnwrapDelay = 250
GatewayDelay = 500
ServiceDelay = 500
KaetzchenDelay = 750
SchedulerSlack = 150
SendSlack = 50
DecoySlack = 15000
ConnectTimeout = 60000
HandshakeTimeout = 30000
ReauthInterval = 30000
SendDecoyTraffic = false
DisableRateLimit = false
GenerateOnly = false

85

	Introduction
	Components and configuration of the Katzenpost mixnet
	Understanding the Katzenpost components
	Directory authorities (dirauths)
	Mix nodes
	Gateway nodes
	Service nodes
	Clients

	Configuring Katzenpost
	Configuring directory authorities
	Dirauth: Server section
	Dirauth: Authorities section
	Dirauth: Logging section
	

	Dirauth: Parameters section
	Dirauth: Debug section
	Dirauth: Mixes sections
	Dirauth: GatewayNodes section
	Dirauth: ServiceNodes sections
	Dirauth: Topology section
	Dirauth: SphinxGeometry section
	

	Configuring mix nodes
	Mix node: Server section
	

	Mix node: Logging section
	

	Mix node: PKI section
	

	Mix node: Management section
	

	Mix node: SphinxGeometry section
	

	Mix node: Debug section
	

	Configuring gateway nodes
	Gateway node: Server section
	

	Gateway node: Logging section
	

	Gateway node: Gateway section
	Gateway node: PKI section
	

	Gateway node: Management section
	

	Gateway node: SphinxGeometry section
	

	Gateway node: Debug section
	

	Configuring service nodes
	Service node: Server section
	

	Service node: Logging section
	

	Service node: ServiceNode section
	Service node: PKI section
	

	Service node: Management section
	

	Service node: SphinxGeometry section
	

	Service node: Debug section
	

	Using the Katzenpost Docker test network
	Requirements
	Preparing to run the container image
	Operating the test mixnet
	Starting and monitoring the mixnet
	Testing the mixnet
	Shutting down the mixnet
	Uninstalling and cleaning up

	Network topology and components
	The Docker file tree

	

	Appendix: Configuration files from the Docker test mixnet
	Directory authority
	Mix node
	Gateway node
	Service node

